Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metals surface precipitation

Thus, witli time, one can see that metal sorption on soil minerals can often result in a continuum of processes from adsorption to precipitation to solid-phase transformation (Figure 3.10), particularly in the case of metals such as Co, Ni, and Zn. The formation of metal surface precipitates could be an important mechanism... [Pg.108]

Most effects of elevated temperatures are adverse to corrosion inhibition. High temperatures increase corrosion rates (about double for a 15°C rise at room temperature), and they decrease the tendency of inhibitors to adsorb on metal surfaces. Precipitate-forming inhibitors are less effective at elevated temperatures because of the greater solubility of the protective deposit. Thermal stability of corrosion inhibitors is an important consideration at high temperatures. Polyphosphates, for example, are hydrolyzed by hot water to form orthophosphates that have little inhibitive value. Most organic compounds are unstable above about 200°C (see Table 17.1) hence, they may provide only temporary inhibition at best. [Pg.446]

Water Treatment Industrial CleaningPipplications. Boiler and cooling tower waters are treated with lignosulfonates to prevent scale deposition (78). In such systems, lignosulfonates sequester hard water salts and thus prevent their deposition on metal surfaces. They can also prevent the precipitation of certain iasoluble heat-coagulable particles (79). Typical use levels for such appHcatioas range from 1—1000 ppm. [Pg.144]

Hydrogenis prevented from forming a passivating layer on the surface by an oxidant additive which also oxidizes ferrous iron to ferric iron. Ferric phosphate then precipitates as sludge away from the metal surface. Depending on bath parameters, tertiary iron phosphate may also deposit and ferrous iron can be incorporated into the crystal lattice. When other metals are included in the bath, these are also incorporated at distinct levels to generate species that can be written as Zn2Me(P0 2> where Me can represent Ni, Mn, Ca, Mg, or Fe. [Pg.222]

Precipitate formation can occur upon contact of iajection water ions and counterions ia formation fluids. Soflds initially preseat ia the iajectioa fluid, bacterial corrosioa products, and corrosion products from metal surfaces ia the iajectioa system can all reduce near-weUbore permeability. Injectivity may also be reduced by bacterial slime that can grow on polymer deposits left ia the wellbore and adjacent rock. Strong oxidising agents such as hydrogen peroxide, sodium perborate, and occasionally sodium hypochlorite can be used to remove these bacterial deposits (16—18). [Pg.189]

Boiler Deposits. Deposition is a principal problem in the operation of steam generating equipment. The accumulation of material on boiler surfaces can cause overheating and/or corrosion. Both of these conditions frequentiy result in unscheduled downtime. Common feed-water contaminants that can form boiler deposits include calcium, magnesium, iron, copper, aluminum, siUca, and (to a lesser extent) silt and oil. Most deposits can be classified as one of two types scale that crystallized directiy onto tube surfaces or sludge deposits that precipitated elsewhere and were transported to the metal surface by the flowing water. [Pg.263]

The best way to prevent crevice corrosion is to prevent crevices. From a cooling water standpoint, this requires the prevention of deposits on the metal surface. Deposits may be formed by suspended soHds (eg, silt, siUca) or by precipitating species, such as calcium salts. [Pg.267]

Silicates. For many years, siUcates have been used to inhibit aqueous corrosion, particularly in potable water systems. Probably due to the complexity of siUcate chemistry, their mechanism of inhibition has not yet been firmly estabUshed. They are nonoxidizing and require oxygen to inhibit corrosion, so they are not passivators in the classical sense. Yet they do not form visible precipitates on the metal surface. They appear to inhibit by an adsorption mechanism. It is thought that siUca and iron corrosion products interact. However, recent work indicates that this interaction may not be necessary. SiUcates are slow-acting inhibitors in some cases, 2 or 3 weeks may be required to estabUsh protection fully. It is beheved that the polysiUcate ions or coUoidal siUca are the active species and these are formed slowly from monosilicic acid, which is the predorninant species in water at the pH levels maintained in cooling systems. [Pg.270]

Scaling is not always related to temperature. Calcium carbonate and calcium sulfate scaling occur on unheated surfaces when their solubiUties are exceeded in the bulk water. Metallic surfaces are ideal sites for crystal nucleation because of their rough surfaces and the low velocities adjacent to the surface. Corrosion cells on the metal surface produce areas of high pH, which promote the precipitation of many cooling water salts. Once formed, scale deposits initiate additional nucleation, and crystal growth proceeds at an accelerated rate. [Pg.270]

In addition to films that originate at least in part in the corroding metal, there are others that originate in the corrosive solution. These include various salts, such as carbonates and sulfates, which may be precipitated from heated solutions, and insoluble compounds, such as beer stone, which form on metal surfaces in contac t with certain specific products. In addition, there are films of oil and grease that may protect a material from direct contact with corrosive substances. Such oil films may be apphed intentionally or may occur naturally, as in the case of metals submerged in sewage or equipment used for the processing of oily substances. [Pg.2422]

Removing suspended solids, decreasing cycles of concentration, and clarification all may be beneficial in reducing deposits. Biodispersants and biocides should be used in biofouled systems. Simple pH adjustment may lessen precipitation of certain chemical species. The judicious use of chemical corrosion inhibitors has reduced virtually all forms of aqueous corrosion, including underdeposit corrosion. Of course, the cleaner the metal surface, the more effective most chemical inhibition will be. Process leaks must be identified and eliminated. [Pg.83]

Underdeposit corrosion is not so much a single corrosion mechanism as it is a generic description of wastage beneath deposits. Attack may appear much the same beneath silt, precipitates, metal oxides, and debris. Differential oxygen concentration cell corrosion may appear much the same beneath all kinds of deposits. However, when deposits tend to directly interact with metal surfaces, attack is easier to recognize. [Pg.85]

Corrosion of industrial alloys in alkaline waters is not as common or as severe as attack associated with acidic conditions. Caustic solutions produce little corrosion on steel, stainless steel, cast iron, nickel, and nickel alloys under most cooling water conditions. Ammonia produces wastage and cracking mainly on copper and copper alloys. Most other alloys are not attacked at cooling water temperatures. This is at least in part explained by inherent alloy corrosion behavior and the interaction of specific ions on the metal surface. Further, many dissolved minerals have normal pH solubility and thus deposit at faster rates when pH increases. Precipitated minerals such as phosphates, carbonates, and silicates, for example, tend to reduce corrosion on many alloys. [Pg.185]

The white cesium fluoroxy sulfate precipitates from the reaction medium and may be kept for several months in the cold (0 to -15 °C) Metal surfaces can cause detonation of the reagent. The reaction scope of cesium fluoroxysulfate seems narrower than that of acetyl hypofluorite because of its limited solubility in organic solvents Cesium fluoroxysulfate has not been prepared with a fluorine-18 label. [Pg.134]

The carbon dioxide produced can contribute to the corrosion of metal. The deposits of ferric hydroxide that precipitate on the metal surface may produce oxygen concentration cells, causing corrosion under the deposits. Gallionalla and Crenothrix are two examples of iron-oxidizing bacteria. [Pg.1300]

Sodium arsenite can be used to detect the presence of iron sulfide on the metal surface. Iron sulfide is the corrosion product of the reaction between hydrogen sulfide in drilling fluid and iron in the drillpipe. An acid solution of sodium arsenite reacts with the sulfide to form a bright yellow precipitate. [Pg.1318]

With insufficient carbon dioxide of type 3 (and none of type 4) the water will be supersaturated with calcium carbonate and a slight increase in pH (at the local cathodes) will tend to cause its precipitation. If the deposit is continuous and adherent the metal surface may become isolated from the water and hence protected from corrosion. If type 4 carbon dioxide is present there can be no deposition of calcium carbonate and old deposits will be dissolved there cannot therefore be any protection by calcium carbonate scale. [Pg.351]

Although the Langelier index is probably the most frequently quoted measure of a water s corrosivity, it is at best a not very reliable guide. All that the index can do, and all that its author claimed for it is to provide an indication of a water s thermodynamic tendency to precipitate calcium carbonate. It cannot indicate if sufficient material will be deposited to completely cover all exposed metal surfaces consequently a very soft water can have a strongly positive index but still be corrosive. Similarly the index cannot take into account if the precipitate will be in the appropriate physical form, i.e. a semi-amorphous egg-shell like deposit that spreads uniformly over all the exposed surfaces rather than forming isolated crystals at a limited number of nucleation sites. The egg-shell type of deposit has been shown to be associated with the presence of organic material which affects the growth mechanism of the calcium carbonate crystals . Where a substantial and stable deposit is produced on a metal surface, this is an effective anticorrosion barrier and forms the basis of a chemical treatment to protect water pipes . However, the conditions required for such a process are not likely to arise with any natural waters. [Pg.359]

Generally, the most common cations in the soil solution are potassium, sodium, magnesium and calcium. Alkali soils are high in sodium and potassium, while calcareous soils contain predominantly magnesium and calcium. Salts of all four of these elements tend to accelerate metallic corrosion by the mechanisms mentioned. The alkaline earth elements, calcium and magnesium, however, tend to form insoluble oxides and carbonates in nonacid conditions. These insoluble precipitates may result in a protective layer on the metal surface and reduced corrosive activity. [Pg.383]

The anionic portions of the soil solution play a role of equal importance to the cations. The anions function in the manner outlined for cations in conductivity and concentration-cell action, and have an additional action if they react with the metal cation and form insoluble salts. Thus, if the metal is lead and the predominant anion is sulphate, a layer of insoluble lead sulphate may precipitate on the metal surface and form an effective barrier against further loss of metal. [Pg.383]

The most commonly observed effect of current flow is the development of alkaline conditions at the cathode. On bare metal this alkaline zone may exist only at the metal surface and may often reach pH values of 10 to 12. When the soil solution contains appreciable calcium or magnesium these cations usually form a layer of carbonate or hydroxide at the cathodic area. On coated lines the cations usually move to holidays or breaks in the coating. On failing asphalt or asphalt mastic type coatings, masses of precipitated calcium and magnesium often form nodules or tubercles several centimetres in diameter. [Pg.386]

Cathodic protection in seawater also results in the precipitation of a calcareous scale on the metal surface (due largely to the increase in pH (see equation 9.1)) and the scale has a largely benehcial effect in three respects. [Pg.66]

Principles The reduction reaction is controlled essentially by the usual kinetic factors such as concentration of reactants, temperature, agitation, catalysts, etc. Where the reaction is vigorous, as, for example, when a powerful reducing agent like hydrazine is used, wasteful precipitation of A/, may occur throughout the whole plating solution followed by deposition on all exposed metallic and non-metallic surfaces which can provide favourable nucleation sites. In order to restrict deposition and aid adhesion, the selected areas are pre-sensitised after cleaning the sensitisers used are often based on noble metal salts. [Pg.435]


See other pages where Metals surface precipitation is mentioned: [Pg.496]    [Pg.2136]    [Pg.496]    [Pg.2136]    [Pg.392]    [Pg.151]    [Pg.151]    [Pg.108]    [Pg.140]    [Pg.476]    [Pg.891]    [Pg.18]    [Pg.72]    [Pg.127]    [Pg.137]    [Pg.143]    [Pg.660]    [Pg.1197]    [Pg.203]    [Pg.779]    [Pg.813]    [Pg.256]    [Pg.226]    [Pg.37]    [Pg.156]    [Pg.36]    [Pg.332]   
See also in sourсe #XX -- [ Pg.100 , Pg.109 ]




SEARCH



Aluminum hydroxide surface precipitates Metal

Metal surface precipitates, formation

Metal-hydroxide surface precipitates

Metal-hydroxide surface precipitates formation

Metals precipitation

Precipitation surface

Surface precipitation, of metals

© 2024 chempedia.info