Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass interface

Passivation at the metal/active mass interface, or of the active mass itself can also lead to failure. Detrimental changes in the morphology of the active mass and microstructural changes in the grid material can also occur. [Pg.736]

Pinkston, J.D., Advantages and drawbacks of popular supercritical fluid chromatography/ mass interfacing approaches—a user s perspective, Eur. J. Mass Spectrom. (Chichester, Eng), 11(2), 189, 2005. [Pg.294]

However, tubular plates have some disadvantages as well. Their production is a bit more expensive. Furthermore, the contact area between the lead current collector and the active material is reduced when cylindrical spines are used. Thus, under continuous heavy current drains, the increased current density at the spine active mass interface leads to higher polarization and local heating, which may cause cracking of the CL. [Pg.216]

A general prerequisite for the existence of a stable interface between two phases is that the free energy of formation of the interface be positive were it negative or zero, fluctuations would lead to complete dispersion of one phase in another. As implied, thermodynamics constitutes an important discipline within the general subject. It is one in which surface area joins the usual extensive quantities of mass and volume and in which surface tension and surface composition join the usual intensive quantities of pressure, temperature, and bulk composition. The thermodynamic functions of free energy, enthalpy and entropy can be defined for an interface as well as for a bulk portion of matter. Chapters II and ni are based on a rich history of thermodynamic studies of the liquid interface. The phase behavior of liquid films enters in Chapter IV, and the electrical potential and charge are added as thermodynamic variables in Chapter V. [Pg.1]

There is, of course, a mass of rather direct evidence on orientation at the liquid-vapor interface, much of which is at least implicit in this chapter and in Chapter IV. The methods of statistical mechanics are applicable to the calculation of surface orientation of assymmetric molecules, usually by introducing an angular dependence to the inter-molecular potential function (see Refs. 67, 68, 77 as examples). Widom has applied a mean-held approximation to a lattice model to predict the tendency of AB molecules to adsorb and orient perpendicular to the interface between phases of AA and BB [78]. In the case of water, a molecular dynamics calculation concluded that the surface dipole density corresponded to a tendency for surface-OH groups to point toward the vapor phase [79]. [Pg.65]

The reports were that water condensed from the vapor phase into 10-100-/im quartz or pyrex capillaries had physical properties distinctly different from those of bulk liquid water. Confirmations came from a variety of laboratories around the world (see the August 1971 issue of Journal of Colloid Interface Science), and it was proposed that a new phase of water had been found many called this water polywater rather than the original Deijaguin term, anomalous water. There were confirming theoretical calculations (see Refs. 121, 122) Eventually, however, it was determined that the micro-amoimts of water that could be isolated from small capillaries was always contaminated by salts and other impurities leached from the walls. The nonexistence of anomalous or poly water as a new, pure phase of water was acknowledged in 1974 by Deijaguin and co-workers [123]. There is a mass of fascinating anecdotal history omitted here for lack of space but told very well by Frank [124]. [Pg.248]

Modern mass spectrometers are interfaced with computerized data handling sys terns capable of displaying the mass spectrum according to a number of different for mats Bar graphs on which relative intensity is plotted versus m z are the most common Figure 13 40 shows the mass spectrum of benzene m bar graph form... [Pg.568]

For mixture.s the picture is different. Unless the mixture is to be examined by MS/MS methods, usually it will be necessary to separate it into its individual components. This separation is most often done by gas or liquid chromatography. In the latter, small quantities of emerging mixture components dissolved in elution solvent would be laborious to deal with if each component had to be first isolated by evaporation of solvent before its introduction into the mass spectrometer. In such circumstances, the direct introduction, removal of solvent, and ionization provided by electrospray is a boon and puts LC/MS on a level with GC/MS for mixture analysis. Further, GC is normally concerned with volatile, relatively low-molecular-weight compounds and is of little or no use for the many polar, water soluble, high-molecular-mass substances such as the peptides, proteins, carbohydrates, nucleotides, and similar substances found in biological systems. LC/MS with an electrospray interface is frequently used in biochemical research and medical analysis. [Pg.59]

The efficiency of separation of solvent from solute varies with their nature and the rate of flow of liquid from the HPLC into the interface. Volatile solvents like hexane can be evaporated quickly and tend not to form large clusters, and therefore rates of flow of about 1 ml/min can be accepted from the HPLC apparatus. For less-volatile solvents like water, evaporation is slower, clusters are less easily broken down, and maximum flow rates are about 0.1-0.5 ml/min. Because separation of solvent from solute depends on relative volatilities and rates of diffusion, the greater the molecular mass difference between them, the better is the efficiency of separation. Generally, HPLC is used for substances that are nonvolatile or are thermally labile, as they would otherwise be analyzed by the practically simpler GC method the nonvolatile substances usually have molecular masses considerably larger than those of commonly used HPLC solvents, so separation is good. [Pg.79]

Dynamic Fast-Atom Bombardment and Liquid-Phase Secondary Ion Mass Spectrometry (FAB/LSIMS) Interface... [Pg.81]

The basic principles of fast-atom bombardment (FAB) and liquid-phase secondary ion mass spectrometry (LSIMS) are discussed only briefly here because a fuller description appears in Chapter 4. This chapter focuses on the use of FAB/LSIMS as part of an interface between a liquid chromatograph (LC) and a mass spectrometer (MS), although some theory is presented. [Pg.81]

The end or front of the plasma flame impinges onto a metal plate (the cone or sampler or sampling cone), which has a small hole in its center (Figure 14.2). The region on the other side of the cone from the flame is under vacuum, so the ions and neutrals passing from the atmospheric-pressure hot flame into a vacuum space are accelerated to supersonic speeds and cooled as rapid expansion occurs. A supersonic jet of gas passes toward a second metal plate (the skimmer) containing a hole smaller than the one in the sampler, where ions pass into the mass analyzer. The sampler and skimmer form an interface between the plasma flame and the mass analyzer. A light... [Pg.88]

Ions produced in the plasma must be transferred to a mass analyzer. The flame is very hot and at atmospheric pressure, but the mass analyzer is at room temperature and under vacuum. To effect transfer of ions from the plasma to the analyzer, the interface must be as efficient as possible if ion yields from the plasma are to be maintained in the analyzer. [Pg.95]

After the skimmer, the ions must be prepared for mass analysis, and electronic lenses in front of the analyzer are used to adjust ion velocities and flight paths. The skimmer can be considered to be the end of the interface region stretching from the end of the plasma flame. Some sort of light stop must be used to prevent emitted light from the plasma reaching the ion collector in the mass analyzer (Figure 14.2). [Pg.95]

Aerosols can be produced as a spray of droplets by various means. A good example of a nebulizer is the common household hair spray, which produces fine droplets of a solution of hair lacquer by using a gas to blow the lacquer solution through a fine nozzle so that it emerges as a spray of small droplets. In use, the droplets strike the hair and settle, and the solvent evaporates to leave behind the nonvolatile lacquer. For mass spectrometry, a spray of a solution of analyte can be produced similarly or by a wide variety of other methods, many of which are discussed here. Chapters 8 ( Electrospray Ionization ) and 11 ( Thermospray and Plasmaspray Interfaces ) also contain details of droplet evaporation and formation of ions that are relevant to the discussion in this chapter. Aerosols are also produced by laser ablation for more information on this topic, see Chapters 17 and 18. [Pg.138]

By connecting a liquid chromatograph to a suitable mass spectrometer through an interface and including a data system, the combined method of LC/MS (sometimes written HPLC/MS) can be used routinely to separate complex mixtures into their individual components, identify the components, and estimate their amounts. The technique is widely used. [Pg.268]

Dynamic FAB is an interface between a liquid chromatograph and a mass spectrometer and is, at the same time, an ion source. As an inlet/ion source, this technique fulfils a similar function to plasmaspray and electrospray, both of which are combined inlet/ion sources. [Pg.394]


See other pages where Mass interface is mentioned: [Pg.445]    [Pg.218]    [Pg.97]    [Pg.99]    [Pg.58]    [Pg.445]    [Pg.218]    [Pg.97]    [Pg.99]    [Pg.58]    [Pg.30]    [Pg.147]    [Pg.726]    [Pg.1264]    [Pg.1828]    [Pg.1939]    [Pg.1941]    [Pg.1942]    [Pg.2271]    [Pg.2609]    [Pg.2723]    [Pg.2747]    [Pg.2760]    [Pg.2826]    [Pg.2892]    [Pg.263]    [Pg.513]    [Pg.561]    [Pg.586]    [Pg.775]    [Pg.59]    [Pg.77]    [Pg.82]    [Pg.88]    [Pg.89]    [Pg.262]   
See also in sourсe #XX -- [ Pg.24 ]

See also in sourсe #XX -- [ Pg.62 ]




SEARCH



© 2024 chempedia.info