Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal toxicity silver

Small amounts of silver are used in a variety of other products. For example, it is used in dental amalgams. An amalgam is an alloy in which mercury is one of the metals used. Silver amalgams work well for filling decayed teeth. They are non-toxic and do not break down or react with other materials very readily. Silver is also used in specialized batteries, cell phone covers, circuit boards, and Radio Frequency Identification Devices (RFIDs). [Pg.544]

In connection with the toxicity of selenium, it should be noted that arsenite presumably can overcome selenium poisoning and that selenium compounds have been used to treat heavy metal poisoning, arising from such metals as silver, cadmium, mercury and lead . This is thought to occur by altering the coordination of these metals (e.g. selenium compounds have a greater affinity for mercury and methyl mercury than do the sulfur analogs) as well as their retention and distribution in the body. [Pg.4]

Various proposals have been presented to explain the interaction of selenium with heavy metals. However, no single one appears to explain the mechanism of interaction with all heavy metals. It appears that there are several mechanisms involved in this interaction and that more than one could be involved with a particular metal. It is clear that selenium does not protect animals against heavy metal toxicity by increasing their excretion instead, it causes an increased retention of metals (Parizek et al, 1971 Wagner et al., 1975 Diplock, 1976 Ganther, 1978 Whanger, 1981). A summary of the proposed interactions of selenium with cadmium, mercury, and silver is presented in Fig. 1. [Pg.242]

Adhesives are poor conductors of heat and electricity, but both can be increased by filling with powdered metals, especially silver. To increase thermal conductivity alone, metal oxide fillers can be used. The most effective of these is beryllium oxide, which is both toxic and expensive aluminum oxide is a practical alternative. Some values of thermal conductivity are collected in 0 Table 18.6. [Pg.431]

Pure holmium has a metallic to bright silver luster. It is relatively soft and malleable, and is stable in dry air at room temperature, but rapidly oxidizes in moist air and at elevated temperatures. The metal has unusual magnetic properties. Few uses have yet been found for the element. The element, as with other rare earths, seems to have a low acute toxic rating. [Pg.193]

These salts are corrosive and are to be considered toxic because of the presence of Ag+ ions. The American Conference of Government Industrial Hygienists (ACGIH) (1992—1993) has adopted TWA values of 0.01 mg/m for silver metal and 0.01 mg/m for soluble silver salts. TWA for fluorides as F ions is 2.5 mg/m. The MSDS should be consulted prior to use. Skin contact and inhalation should be avoided. [Pg.236]

Miscellaneous. Electron beams can be used to decompose a gas such as silver chloride and simultaneously deposit silver metal. An older technique is the thermal decomposition of volatile and extremely toxic gases such as nickel carbonyl [13463-39-3] Ni(CO)4, to form dense deposits or dendritic coatings by modification of coating parameters. [Pg.137]

Some metals used as metallic coatings are considered nontoxic, such as aluminum, magnesium, iron, tin, indium, molybdenum, tungsten, titanium, tantalum, niobium, bismuth, and the precious metals such as gold, platinum, rhodium, and palladium. However, some of the most important poUutants are metallic contaminants of these metals. Metals that can be bioconcentrated to harmful levels, especially in predators at the top of the food chain, such as mercury, cadmium, and lead are especially problematic. Other metals such as silver, copper, nickel, zinc, and chromium in the hexavalent oxidation state are highly toxic to aquatic Hfe (37,57—60). [Pg.138]

Solders. Modem dental solders are made from mostly corrosion-resistant, nontoxic metals. Minimal quantities of tin and other elements are often added, some of which could produce toxic effects in the unalloyed state. Each solder is used for specific appHcations (180—188) typical compositions and properties of solders used in dentistry are presented in Table 11. Most of the ingredients of solders are resistant to corrosion, and alloying them with other ingredients renders the alloy safe for use in appHances placed in the oral environment. Silver solders corrode, but are used only for temporary appHances. Available products do not contain cadmium, although cadmium was an ingredient of some silver solders up to ca 1980. [Pg.487]

The most common toxic metals in industrial use are cadmium, chromium, lead, silver, and mercury less commonly used are arsenic, selenium (both metalloids), and barium. Cadmium, a metal commonly used in alloys and myriads of other industrial uses, is fairly mobile in the environment and is responsible for many maladies including renal failure and a degenerative bone disease called "ITA ITA" disease. Chromium, most often found in plating wastes, is also environmentally mobile and is most toxic in the Cr valence state. Lead has been historically used as a component of an antiknock compound in gasoline and, along with chromium (as lead chromate), in paint and pigments. [Pg.177]

The most successful class of active ingredient for both oxidation and reduction is that of the noble metals silver, gold, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Platinum and palladium readily oxidize carbon monoxide, all the hydrocarbons except methane, and the partially oxygenated organic compounds such as aldehydes and alcohols. Under reducing conditions, platinum can convert NO to N2 and to NH3. Platinum and palladium are used in small quantities as promoters for less active base metal oxide catalysts. Platinum is also a candidate for simultaneous oxidation and reduction when the oxidant/re-ductant ratio is within 1% of stoichiometry. The other four elements of the platinum family are in short supply. Ruthenium produces the least NH3 concentration in NO reduction in comparison with other catalysts, but it forms volatile toxic oxides. [Pg.79]

The widespread use of many metals such as silver, cadmium, copper, mercury, nickel, lead, and zinc has resulted in their accumulation in the environment. Sediments are often the repositories of toxic metals (e.g.. Table 15-2). For example, copper is used as an anti-biofouling agent in marine paints and many harbor sediments contain markedly elevated levels of copper. [Pg.399]


See other pages where Metal toxicity silver is mentioned: [Pg.175]    [Pg.536]    [Pg.641]    [Pg.1581]    [Pg.536]    [Pg.641]    [Pg.1627]    [Pg.319]    [Pg.320]    [Pg.1366]    [Pg.120]    [Pg.845]    [Pg.553]    [Pg.269]    [Pg.738]    [Pg.765]    [Pg.846]    [Pg.545]    [Pg.44]    [Pg.103]    [Pg.245]    [Pg.98]    [Pg.226]    [Pg.65]    [Pg.81]    [Pg.114]    [Pg.195]    [Pg.55]    [Pg.251]    [Pg.132]    [Pg.139]    [Pg.395]    [Pg.459]    [Pg.85]    [Pg.61]    [Pg.136]    [Pg.80]    [Pg.208]    [Pg.326]   
See also in sourсe #XX -- [ Pg.1384 ]




SEARCH



Metals silver

Silver, metallic

Toxic metals

Toxicity, metal

© 2024 chempedia.info