Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal oxides transport properties

A thin layer deposited between the electrode and the charge transport material can be used to modify the injection process. Some of these arc (relatively poor) conductors and should be viewed as electrode materials in their own right, for example the polymers polyaniline (PAni) [81-83] and polyethylenedioxythiophene (PEDT or PEDOT) [83, 841 heavily doped with anions to be intrinsically conducting. They have work functions of approximately 5.0 cV [75] and therefore are used as anode materials, typically on top of 1TO, which is present to provide lateral conductivity. Thin layers of transition metal oxide on ITO have also been shown [74J to have better injection properties than ITO itself. Again these materials (oxides of ruthenium, molybdenum or vanadium) have high work functions, but because of their low conductivity cannot be used alone as the electrode. [Pg.537]

Metal oxides possess multiple functional properties, such as acid-base, redox, electron transfer and transport, chemisorption by a and 71-bonding of hydrocarbons, O-insertion and H-abstract, etc. which make them very suitable in heterogeneous catalysis, particularly in allowing multistep transformations of hydrocarbons1-8 and other catalytic applications (NO, conversion, for example9,10). They are also widely used as supports for other active components (metal particles or other metal oxides), but it is known that they do not act often as a simple supports. Rather, they participate as co-catalysts in the reaction mechanism (in bifunctional catalysts, for example).11,12... [Pg.365]

We shall briefly discuss the electrical properties of the metal oxides. Thermal conductivity, electrical conductivity, the Seebeck effect, and the Hall effect are some of the electron transport properties of solids that characterize the nature of the charge carriers. On the basis of electrical properties, the solid materials may be classified into metals, semiconductors, and insulators as shown in Figure 2.1. The range of electronic structures of oxides is very wide and hence they can be classified into two categories, nontransition metal oxides and transition metal oxides. In nontransition metal oxides, the cation valence orbitals are of s or p type, whereas the cation valence orbitals are of d type in transition metal oxides. A useful starting point in describing the structures of the metal oxides is the ionic model.5 Ionic crystals are formed between highly electropositive... [Pg.41]

A key aspect of metal oxides is that they possess multiple functional properties acid-base, electron transfer and transport, chemisorption by a and 7i-bonding of hydrocarbons, O-insertion and H-abstraction, etc. This multi-functionality allows them to catalyze complex selective multistep transformations of hydrocarbons, as well as other catalytic reactions (NO,c conversion, for example). The control of the catalyst multi-functionality requires the ability to control not only the nanostructure, e.g. the nano-scale environment around the active site, " but also the nano-architecture, e.g. the 3D spatial organization of nano-entities. The active site is not the only relevant aspect for catalysis. The local area around the active site orients or assists the coordination of the reactants, and may induce sterical constrains on the transition state, and influences short-range transport (nano-scale level). Therefore, it plays a critical role in determining the reactivity and selectivity in multiple pathways of transformation. In addition, there are indications pointing out that the dynamics of adsorbed species, e.g. their mobility during the catalytic processes which is also an important factor determining the catalytic performances in complex surface reaction, " is influenced by the nanoarchitecture. [Pg.81]

Another direction of investigation is to extend the nanotube array architecture to other metal oxides, most noticeably a-Fc203 and mixed FeTi oxides, to develop materials capable of efficiently responding to the visible light spectrum, while maintaining the outstanding charge transport properties demonstrated by the HO2 nanotube arrays. [Pg.111]

A comprehensive report which focussed on the La2 xSrxCu O4-x/2+S ser es was published (139) in 1983 by this research group. In this broad review they reported the magnetic and electrical transport properties of these mixed-valent copper oxides in the temperature range 120-650 K. They concluded that the original semiconducting behavior in La2Cu04 transformed to semi-metallic behavior as the Cu3+ content increased with Sr-substitution. No experiments were conducted below 50 K, and therefore superconductivity was not observed. Three series of compounds, with 0.00 < x < 1.20 were... [Pg.71]

There have been many attempts to relate bulk electronic properties of semiconductor oxides with their catalytic activity. The electronic theory of catalysis of metal oxides developed by Hauffe (1966), Wolkenstein (1960) and others (Krylov, 1970) is base d on the idea that chemisorption of gases like CO and N2O on semiconductor oxides is associated with electron-transfer, which results in a change in the electron transport properties of the solid oxide. For example, during CO oxidation on ZnO a correlation between change in charge-carrier concentration and reaction rate has been found (Cohn Prater, 1966). [Pg.519]

Mixed metal oxide pigments are thermally stable, water-insoluble materials. They are not classified as hazardous substances, and are therefore not subject to international transport regulations. When stored under dry conditions their pigment properties do not deteriorate. [Pg.104]

To evaluate the thermodynamic and radiation properties of a natural or perturbed state of the upper atmosphere or ionosphere, the thermal and transport properties of heated air are required. Such properties are also of particular interest in plasma physics, in gas laser systems, and in basic studies of airglow and the aurora. In the latter area the release of certain chemical species into the upper atmosphere results in luminous clouds that display the resonance electronic-vibrational-rotational spectrum of the released species. Such spectra are seen in rocket releases of chemicals for upper-atmosphere studies and on reentry into the atmosphere of artificial satellites. Of particular interest in this connection are the observed spectra of certain metallic oxides and air diatomic species. From band-intensity distribution of the spectra and knowledge of the /-values for electronic and vibrational transitions, the local conditions of the atmosphere can be determined.1... [Pg.227]

The catalytic activity of these simple oxides has been correlated [38,39] with its ability to chemisorb simple molecules such as CO and N20 via an electron transfer, which results in a change in the electron transport properties in the semiconductor solid oxide. In this sense, the catalytic activity of simple oxides has been correlated with the band gap, and the number of d-electrons for 3d metal oxides [22],... [Pg.68]


See other pages where Metal oxides transport properties is mentioned: [Pg.352]    [Pg.169]    [Pg.304]    [Pg.134]    [Pg.431]    [Pg.129]    [Pg.144]    [Pg.202]    [Pg.21]    [Pg.84]    [Pg.305]    [Pg.294]    [Pg.366]    [Pg.381]    [Pg.673]    [Pg.8]    [Pg.430]    [Pg.245]    [Pg.566]    [Pg.197]    [Pg.105]    [Pg.112]    [Pg.50]    [Pg.25]    [Pg.318]    [Pg.472]    [Pg.235]    [Pg.165]    [Pg.179]    [Pg.180]    [Pg.181]    [Pg.344]    [Pg.135]    [Pg.207]    [Pg.161]    [Pg.566]    [Pg.227]    [Pg.246]    [Pg.307]    [Pg.40]   
See also in sourсe #XX -- [ Pg.605 , Pg.606 , Pg.607 ]




SEARCH



Oxidation properties

Transport properties

Transport properties metals

Transporters properties

© 2024 chempedia.info