Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal Oxides applications

Kallay, N. et al.. Adsorption of organic acids on metal oxides Application of the surface potential measurements. Colloids Surf. A, 306, 40, 2007. [Pg.971]

Criteria for Metal Oxide Application in Solid Electrolyte-Based... [Pg.1]

Szotek Z, Temmerman W M and Winter H 1993 Application of the self-interaction correction to transition-metal oxides Phys. Rev. B 47 4029... [Pg.2230]

Highly protective layers can also fonn in gaseous environments at ambient temperatures by a redox reaction similar to that in an aqueous electrolyte, i.e. by oxygen reduction combined with metal oxidation. The thickness of spontaneously fonned oxide films is typically in the range of 1-3 nm, i.e., of similar thickness to electrochemical passive films. Substantially thicker anodic films can be fonned on so-called valve metals (Ti, Ta, Zr,. ..), which allow the application of anodizing potentials (high electric fields) without dielectric breakdown. [Pg.2722]

Anode Applications. Graphite has been used as the primary material for electrolysis of brine (aqueous) and fused-salt electrolytes, both as anode and cathode. Technological advances, however, have resulted in a dimensionally stable anode (DSA) consisting of precious metal oxides deposited on a titanium substrate that has replaced graphite as the primary anode (38—41) (see Alkali and chlorine products). [Pg.521]

Metal oxides, sulfides, and hydrides form a transition between acid/base and metal catalysts. They catalyze hydrogenation/dehydro-genation as well as many of the reactions catalyzed by acids, such as cracking and isomerization. Their oxidation activity is related to the possibility of two valence states which allow oxygen to be released and reabsorbed alternately. Common examples are oxides of cobalt, iron, zinc, and chromium and hydrides of precious metals that can release hydrogen readily. Sulfide catalysts are more resistant than metals to the formation of coke deposits and to poisoning by sulfur compounds their main application is in hydrodesulfurization. [Pg.2094]

ANSl/lEEE Guide for the application of metal oxide surge arresters for a.c. systems ... [Pg.624]

The diffusion coefficients of cations in metal oxides are usually measured through the use of radioactive isotopes. Because of the friable nature of oxides it is exU emely difficult to use the sectioning technique employed for metal samples. The need for this can be avoided by the application of radioisotopes which emit radiation having a well established absorption law in matter. Isotopes which emit y radiation are very useful when the cation has a relatively high diffusion coefficient because of the long-range peneU ation of y rays. The absorption law is... [Pg.229]

An Application NMR of V oxide films on metal oxide supports... [Pg.465]

Fillers are used in tooling and casting application. Not only do they reduce cost but in diluting the resin content they also reduce curing shrinkage, lower the coefficient of expansion, reduce exotherms and may increase thermal conductivity. Sand is frequently used in inner cores whereas metal powders and metal oxide fillers are used in surface layers. Wire wool and asbestos are sometimes used to improve impact strength. [Pg.769]

Apart from the application of XPS in catalysis, the study of corrosion mechanisms and corrosion products is a major area of application. Special attention must be devoted to artifacts arising from X-ray irradiation. For example, reduction of metal oxides (e. g. CuO -> CU2O) can occur, loosely bound water or hydrates can be desorbed in the spectrometer vacuum, and hydroxides can decompose. Thorough investigations are supported by other surface-analytical and/or microscopic techniques, e.g. AFM, which is becoming increasingly important. [Pg.25]

Titanium dioxide used for adhesive applications should contain an inorganic coating to control polarity, improve its ease of dispersion, and improve its weather resistance. The inorganic coating (zirconium dioxide, silica, alumina) is applied in the aqueous sluny by precipitation of one or more hydrated metal oxides and by neutralization of acidic and alkaline compounds. [Pg.635]

Fillers can also be used to promote or enhance the thermal stability of the silicone adhesive. Normal silicone systems can withstand exposure to temperatures of 200 C for long hours without degradation. However, in some applications the silicone must withstand exposure to temperatures of 280 C. This can be achieved by adding thermal stabilizers to the adhesive formulations. These are mainly composed of metal oxides such as iron oxide and cerium oxide, copper organic complexes, or carbon black. The mechanisms by which the thermal stabilization occurs are discussed in terms of radical chemistry. [Pg.692]

Metal Oxide - Since metals are less electrophilic than silicon, metal oxide adsorbents show even stronger selectivity for polar molecules than do siliceous materials. The most commonly used metal oxide adsorbent is activated alumina, used primarily for gas drying. Occasionally, metal oxides find applications in specific chemisorption systems. For example, several processes are under development utilizing lime or limestone for removal of sulfur oxides from flue gases. Activated aluminas have surface areas in the range of 200 to 1,000 ftVft Average pore diameters range from about 30 to 80 A. [Pg.468]

The development of electrostatic precipitators soon led to new applications, including the separation of metal oxide fumes. This was followed by various metal manufacturing processes such as the lead blast furnace, ore roaster, and reverberatory furnace. Electrostatic gas cleaning was soon applied also in cement kilns and in several exotic applications, such as recovering valuable metals from exhaust gases. [Pg.1212]

These are generally reserved for specialist applications, and are in the main more costly than conventional soap-based greases. The most common substances used as nonsoap thickeners are silica and clays prepared in such a way that they form gels with mineral and synthetic oils. Other materials that have been used are carbon black, metal oxides and various organic compounds. [Pg.879]

Sintered and sprayed ceramic anodes have been developed for cathodic protection applications. The ceramic anodes are composed of a group of materials classified as ferrites with iron oxide as the principal component. The electrochemical properties of divalent metal oxide ferrites in the composition range 0- lA/O-0-9Fe2O3 where M represents a divalent metal, e.g. Mg, Zn, Mn, Co or Ni, have been examined by Wakabayashi and Akoi" . They found that nickel ferrite exhibited the lowest consumption rate in 3% NaCl (of 1 56 g A y at 500 Am and that an increase in the NiO content to 40mol 7o, i.e. O NiO-O-bFejO, reduced the dissolution rate to 0-4gA y at the expense of an increase in the material resistivity from 0-02 to 0-3 ohm cm. [Pg.179]

Mixed Metal Oxide Coated Titanium As an alternative to platinised titanium, these materials are finding increasing use in seawater and soil based deep well groundbed applications. [Pg.224]

Perhaps the first practical application of carbonaceous materials in batteries was demonstrated in 1868 by Georges Le-clanche in cells that bear his name [20]. Coarsely ground MnO, was mixed with an equal volume of retort carbon to form the positive electrode. Carbonaceous powdered materials such as acetylene black and graphite are commonly used to enhance the conductivity of electrodes in alkaline batteries. The particle morphology plays a significant role, particularly when carbon blacks are used in batteries as an electrode additive to enhance the electronic conductivity. One of the most common carbon blacks which is used as an additive to enhance the electronic conductivity of electrodes that contain metal oxides is acetylene black. A detailed discussion on the desirable properties of acetylene black in Leclanche cells is provided by Bregazzi [21], A suitable carbon for this application should have characteristics that include (i) low resistivity in the presence of the electrolyte and active electrode material, (ii) absorption and retention of a significant... [Pg.236]

Application of Solid State Physics to Pyrotechnics Modification of the reactivity of metallic oxides by doping (Refs 56,86 96) may result in safer igniters, initiators and reaction mixts. [Pg.995]

As a final example of the application of gas-liquid-particle operation to a process involving a gaseous reactant and a solid catalyst, the possibility of polymerizing ethylene in, for example, a slurry operation employing a metal or metal oxide catalyst can be cited. It has been suggested that the good control of reaction conditions obtained in a slurry-type operation may be of importance in the production of certain types of polyethylene (Rl). [Pg.78]


See other pages where Metal Oxides applications is mentioned: [Pg.283]    [Pg.2398]    [Pg.2702]    [Pg.2729]    [Pg.51]    [Pg.423]    [Pg.193]    [Pg.300]    [Pg.309]    [Pg.656]    [Pg.957]    [Pg.989]    [Pg.321]    [Pg.160]    [Pg.203]    [Pg.334]    [Pg.1081]    [Pg.1246]    [Pg.129]    [Pg.265]    [Pg.564]    [Pg.629]    [Pg.309]    [Pg.70]    [Pg.543]   
See also in sourсe #XX -- [ Pg.543 , Pg.544 , Pg.545 , Pg.546 , Pg.547 , Pg.548 , Pg.549 , Pg.550 , Pg.551 , Pg.552 , Pg.553 , Pg.554 , Pg.555 , Pg.556 ]




SEARCH



Alkali-promoted metal oxide catalysts applications

Application oxidation

Application oxide

Applications metal oxide catalysts

Applications superacidic metal oxides

Criteria for Metal Oxide Application in Solid Electrolyte-Based Gas Sensors

Electrochemistry of Metal Complexes: Applications from Electroplating to Oxide Layer Formation, First Edition

Metal applications

Metal-oxide catalysis selected applications

Other Applications of Metal Oxides

Oxidized, applications

Sulfate-supported metal oxides applications

© 2024 chempedia.info