Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal, metals titanium

Commercial metal anodes for the chlorine industry came about after the late 1960s when a series of worldwide patents were awarded (6—8). These were based not on the use of the platinum-group metals (qv) themselves, but on coatings comprised of platinum-group metal oxides or a mixture of these oxides with valve metal oxides, such as titanium oxide (see Platinum-GROUP metals, compounds Titanium compounds). In the case of chlor-alkaH production, the platinum-group metal oxides that proved most appropriate for use as coatings on anodes were those of mthenium and iridium. [Pg.119]

Some metals used as metallic coatings are considered nontoxic, such as aluminum, magnesium, iron, tin, indium, molybdenum, tungsten, titanium, tantalum, niobium, bismuth, and the precious metals such as gold, platinum, rhodium, and palladium. However, some of the most important poUutants are metallic contaminants of these metals. Metals that can be bioconcentrated to harmful levels, especially in predators at the top of the food chain, such as mercury, cadmium, and lead are especially problematic. Other metals such as silver, copper, nickel, zinc, and chromium in the hexavalent oxidation state are highly toxic to aquatic Hfe (37,57—60). [Pg.138]

Chlorination. In some instances, the extraction of a pure metal is more easily achieved from the chloride than from the oxide. Oxide ores and concentrates react at high temperature with chlorine gas to produce volatile chlorides of the metal. This reaction can be used for common nonferrous metals, but it is particularly useful for refractory metals like titanium (see Titanium and titanium alloys) and 2irconium (see Zirconium and zirconium compounds), and for reactive metals like aluminum. [Pg.165]

Very reactive metals, eg, titanium or 2irconium, which in the Hquid state react with all the refractory materials available to contain them, also require reduction to soHd metal. Titanium is produced by metallothermic reduction of its chloride using Hquid magnesium at 750°C (KroU process). [Pg.168]

The most common oxidation state of niobium is +5, although many anhydrous compounds have been made with lower oxidation states, notably +4 and +3, and Nb can be reduced in aqueous solution to Nb by zinc. The aqueous chemistry primarily involves halo- and organic acid anionic complexes. Virtually no cationic chemistry exists because of the irreversible hydrolysis of the cation in dilute solutions. Metal—metal bonding is common. Extensive polymeric anions form. Niobium resembles tantalum and titanium in its chemistry, and separation from these elements is difficult. In the soHd state, niobium has the same atomic radius as tantalum and essentially the same ionic radius as well, ie, Nb Ta = 68 pm. This is the same size as Ti ... [Pg.20]

Stmctures are highly varied among the transition metals. The titanium atom in titanium tetraethoxide has the coordination number 6 (Fig. 1). The corresponding zirconium compound, with coordination number 8, has a different stmcture (Fig. 2). Metal alkoxides are colored when the corresponding metal ions are colored, otherwise they are not. [Pg.23]

Nitrogen dissolves in metallic titanium up to a nitrogen content of 20 atom % (TINq 23)- Above 30 atom % (TINq a cubic titanium nitride phase is stable. [Pg.118]

Titanium Monoxide. Titanium monoxide [12137-20-17, TiO, has a rock-salt stmcture but can exist with both oxygen and titanium vacancies. For stoichiometric TiO, the lattice parameter is 417 pm, but varies from ca 418 pm at 46 atom % to 4I62 pm at 54 atom % oxygen. Apparendy, stoichiometric TiO has ca 15% of the Ti and O sites vacant. At high temperatures (>900° C), these vacancies are randomly distributed at low temperatures, they become ordered. Titanium monoxide may be made by heating a stoichiometric mixture of titanium metal and titanium dioxide powders at 1600°C... [Pg.119]

Titanium Sesc uioxide. Ti202 has the comndum stmcture. At room temperature it behaves as a semiconductor having a small (0.2 eV) band gap. At higher temperatures, however, it becomes metallic. This is associated with marked change in the mean Ti—Ti distance. As with TiO, titanium sesquioxide, Ti202, may be made by heating a stoichiometric mixture of titanium metal and titanium dioxide powders at 1600°C under vacuum in an aluminum or molybdenum capsule. [Pg.119]

Titanium trifluoride may be prepared ia 90% yield by the reaction of gaseous hydrogen fluoride, ia practice ia a 1 4 ratio of hydrogen HF, with either titanium metal or titanium hydride at 900°C. [Pg.129]

Alternatively, the TiCl may be reduced using hydrogen, sodium, or magnesium. It follows that TiCl2 is the first stage in the KroU process for the production of titanium metal from titanium tetrachloride. A process for recovery of scrap titanium involving the reaction of scrap metal with titanium tetrachloride at >800° C to form titanium dichloride, collected in a molten salt system, and followed by reaction of the dichloride with magnesium to produce pure titanium metal, has been patented (122,123). [Pg.129]

Water-soluble, alkaline-stable ammonium or metal titanium malates and citrates can be formed by adding a tetraalkyl titanate to an aqueous solution of the ammonium or metal titanium malate or citrate (84). A typical formula is M TiO(citrate), where M is NH, Na, K, Ca, or Ba. [Pg.146]

Titanium—Vanadium Mixed Metal Alkoxides. Titanium—vanadium mixed metal alkoxides, VO(OTi(OR)2)2, are prepared by reaction of titanates, eg, TYZOR TBT, with vanadium acetate ia a high boiling hydrocarbon solvent. The by-product butyl acetate is distilled off to yield a product useful as a catalyst for polymeri2iag olefins, dienes, styrenics, vinyl chloride, acrylate esters, and epoxides (159,160). [Pg.151]

Zirconium [7440-67-7] is classified ia subgroup IVB of the periodic table with its sister metallic elements titanium and hafnium. Zirconium forms a very stable oxide. The principal valence state of zirconium is +4, its only stable valence in aqueous solutions. The naturally occurring isotopes are given in Table 1. Zirconium compounds commonly exhibit coordinations of 6, 7, and 8. The aqueous chemistry of zirconium is characterized by the high degree of hydrolysis, the formation of polymeric species, and the multitude of complex ions that can be formed. [Pg.426]

Hydroxyapaite, the mineral constituent of bone, is appHed to the surfaces of many dental implants for the purpose of increasing initial bone growth. Some iavestigators beHeve that an added benefit is that the hydroxyapatite shields the bone from the metal. However, titanium and its aHoy, Ti-6A1-4V, are biocompatible and have anchored successfuHy as dental implants without the hydroxyapatite coating. [Pg.495]

Very high >80,000 >16 Metal powders, titanium Metal chips... [Pg.1901]

Chemicals or from Merck i Company, Inc., but can also be prepared by dissolving metallic titanium in 20% aqueous hydrochloric acid or by dissolving solid titanium trichloride in 1 M aqueous hydrochloric acid. Titanium Ill) sulfate (from BDH Chemicals Ltd.) can also be used. All... [Pg.68]

Anode 1 = plastic cable anode anode 2 = mixed metal oxide-titanium. [Pg.430]

Lewis acids are defined as molecules that act as electron-pair acceptors. The proton is an important special case, but many other species can play an important role in the catalysis of organic reactions. The most important in organic reactions are metal cations and covalent compounds of metals. Metal cations that play prominent roles as catalysts include the alkali-metal monocations Li+, Na+, K+, Cs+, and Rb+, divalent ions such as Mg +, Ca +, and Zn, marry of the transition-metal cations, and certain lanthanides. The most commonly employed of the covalent compounds include boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride. Various other derivatives of boron, aluminum, and titanium also are employed as Lewis acid catalysts. [Pg.233]

Sawdust may be employed in cases where the suspension particles consist of a valuable product that may be roasted. For example, titanium dioxide is manufactured by calcining a mixture of sawdust and metal titanium acid. The mixture is obtained as a filter cake after separating the corresponding suspension with a layer of filter aid. [Pg.115]

Finally, oxygen is soluble in metallic titanium up to a composition of TiOo.s with the oxygen atoms occupying octahedral sites in the hep metal lattice distinct phases that have been crystallographically characterized are TieO, TisO and Ti20. It seems likely that in all these reduced oxide phases there is extensive metal-metal bonding. [Pg.962]

The effect of the metals used was then examined (Table 5.4). When the group 4 metals, titanium, zirconium, and hafnium, were screened it was found that a chiral hafnium catalyst gave high yields and enantioselectivity in the model reaction of aldimine lb with 7a, while lower yields and enantiomeric excesses were obtained using a chiral titanium catalyst [17]. [Pg.192]

Titan-kaliumfluorid, n. potassium fluotitanate, -karbid, n, titanium carbide, -metall, n. titanium metal, -nitrid, n, titanium nitride, TitanofluorwasserstoffsMure, /. fluotitanous acid, fluotitanic(III) acid,... [Pg.447]

This example of aluminium illustrates the importance of the protective him, and hlms that are hard, dense and adherent will provide better protection than those that are loosely adherent or that are brittle and therefore crack and spall when the metal is subjected to stress. The ability of the metal to reform a protective him is highly important and metals like titanium and tantalum that are readily passivated are more resistant to erosion-corrosion than copper, brass, lead and some of the stainless steels. There is some evidence that the hardness of a metal is a signihcant factor in resistance to erosion-corrosion, but since alloying to increase hardness will also affect the chemical properties of the alloy it is difficult to separate these two factors. Thus althou copper is highly susceptible to impingement attack its resistance increases with increase in zinc content, with a corresponding increase in hardness. However, the increase in resistance to attack is due to the formation of a more protective him rather than to an increase in hardness. [Pg.192]

In its resistance to liquid metals, titanium shows variable behaviour, the rate of attack often depending upon temperature and increasing with rise in temperature. By thickening the surface film of oxide, resistance to attack is enhanced, and, for example, repeated repair of the surface film renders titanium resistant, on a limited-time basis, to molten zinc in galvanising baths. A surface-oxide thickening technique also enables titanium to be employed in contact with molten aluminium. Titanium equipment is also used in applications involving lead-tin solders, and it is resistant to mercury, at least up to 150 C. [Pg.868]

In the field of electrowinning and electrorefining of metals, titanium has an advantage as a cathode, upon which copper particularly can be deposited with finely balanced adhesion that allows the electrodeposited metal to strip easily when required. Titanium anodes are also being employed as a replacement for lead or graphite in the production of electrolytic manganese dioxide. [Pg.876]

Investigation into the effect has been mainly devoted to reactions with red fuming nitric acid . It seems that in red fuming nitric acid a preliminary reaction results in the formation of a surface deposit of finely divided metallic titanium ignition or pyrophoricity can then be initiated by any slight impact or friction. The tendency to pyrophoricity increases as the nitrogen dioxide content of the nitric acid rises from zero to maximum solubility at about 20%, but decreases as the water content rises, the effect being nearly completely stifled at about 2% water. [Pg.879]

The metallic element titanium (11) is relatively abundant in nature it accounts for 0.56% of the earth s crust. This number may not seem very impressive until you realize that it exceeds the combined abundances of ten familiar elements H, N, C, P, S, Cl, Cr, Ni, Cu, and Zn. The most important ore of titanium is ilmenite. a mineral commonly found as a deposit of black sand along beaches in the United States, Canada, Australia, and Norway. In ilmenite. titanium is chemically combined with iron and oxygen. The presence of iron makes the ore magnetic. [Pg.19]


See other pages where Metal, metals titanium is mentioned: [Pg.344]    [Pg.168]    [Pg.196]    [Pg.43]    [Pg.379]    [Pg.397]    [Pg.176]    [Pg.94]    [Pg.110]    [Pg.117]    [Pg.181]    [Pg.496]    [Pg.400]    [Pg.138]    [Pg.86]    [Pg.462]    [Pg.1190]    [Pg.307]    [Pg.115]    [Pg.139]    [Pg.152]    [Pg.265]   
See also in sourсe #XX -- [ Pg.198 ]




SEARCH



Titanium metal

© 2024 chempedia.info