Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Production butyl-acetate

Titanium—Vanadium Mixed Metal Alkoxides. Titanium—vanadium mixed metal alkoxides, VO(OTi(OR)2)2, are prepared by reaction of titanates, eg, TYZOR TBT, with vanadium acetate ia a high boiling hydrocarbon solvent. The by-product butyl acetate is distilled off to yield a product useful as a catalyst for polymeri2iag olefins, dienes, styrenics, vinyl chloride, acrylate esters, and epoxides (159,160). [Pg.151]

ACETIC ACID ACETIC ANHYDRIDE ALDOL PRODUCTS BUTYL ACETATE BUTYL ALCOHOL BUTYRALDEHYDE CHLORAL ETHYLENEIMINE PYRIDINES... [Pg.518]

Around half of the produced butanol is used as butyl acrylate and methacrylate esters, for latex surface coating, enamels and lacquers (Kirschner 2006). Further significant derivatives of butanol are butyl glycol ether (a solvent and surfactant in many domestic and industrial products), butyl acetate (solvent in the production of lacquers) and plasticisers. Butanol is also an excellent thinner for brake fluids and solvent used in the production of antibiotics, vitamins and hormones (Lee et al. 2008). [Pg.110]

Prospective Processes. There has been much effort invested in examining routes to acetic acid by olefin oxidation or from ethylene, butenes, or j -butyl acetate. No product from these sources is known to have reached the world market the cost of the raw materials is generally prohibitive. [Pg.69]

Acrylic Acid Recovery. The process flow sheet (Fig. 3) shows equipment and conditions for the separations step. The acryUc acid is extracted from the absorber effluent with a solvent, such as butyl acetate, xylene, diisobutyl ketone, or mixtures, chosen for high selectivity for acryUc acid and low solubihty for water and by-products. The extraction is performed using 5—10 theoretical stages in a tower or centrifiigal extractor (46,61—65). [Pg.153]

In typical processes, the gaseous effluent from the second-stage oxidation is cooled and fed to an absorber to isolate the MAA as a 20—40% aqueous solution. The MAA may then be concentrated by extraction into a suitable organic solvent such as butyl acetate, toluene, or dibutyl ketone. Azeotropic dehydration and solvent recovery, followed by fractional distillation, is used to obtain the pure product. Water, solvent, and low boiling by-products are removed in a first-stage column. The column bottoms are then fed to a second column where MAA is taken overhead. Esterification to MMA or other esters is readily achieved using acid catalysis. [Pg.253]

Ethanol can also be obtained by the reaction of methanol with synthesis gas at 185°C and under pressure (6.9—20.7 MPa or 68—204 atm) in the presence of a cobalt octacarbonyl catalyst (177). However, although ethanol was the primary product, methyl formate, methyl, propyl and butyl acetates, propyl and butyl alcohols, and methane were all present in the product. [Pg.408]

The process of post-chlorinating PVC was carried out during World War II in order to obtain polymers soluble in low-cost solvents and which could therefore be used for fibres and lacquers. The derivate was generally prepared by passing chlorine through a solution of PVC in tetrachloroethane at between 50°C and 100°C. Solvents for the product included methylene dichloride, butyl acetate and acetone. These materials were of limited value because of their poor colour, poor light stability, shock brittleness and comparatively low softening point. [Pg.359]

Acetic acid is a versatile reagent. It is an important esterifying agent for the manufacture of cellulose acetate (for acetate fibers and lacquers), vinyl acetate monomer, and ethyl and butyl acetates. Acetic acid is used to produce pharmaceuticals, insecticides, and dyes. It is also a precursor for chloroacetic acid and acetic anhydride. The 1994 U.S. production of acetic acid was approximately 4 billion pounds. [Pg.240]

Ketones react with alcohols to yield products called acetals. Why does the all-cis isomer of 4- cvf-butyl-l13-cyclohexanediol react readily with acetone and an acid cataty st to form an acetal while other stereoisomers do not react In formulating your answer, draw the more stable chair conformations of all four stereoisomers and the product acetal. Use molecular models for help. [Pg.136]

The addition of lithium enolates to 2-alkoxyaldehydes occurs either in a completely non-stereoselective manner, or with moderate selectivity in favor of the product predicted by the Cram-Felkin-Anh model28 ( nonchelation control 3, see reference 28 for a survey of this type of addition to racemic aldehydes). Thus, a 1 1 mixture of the diastereomeric adducts results from the reaction of lithiated tert-butyl acetate and 2-benzyloxypropanal4,28. [Pg.563]

A typical penicillin broth contains 20-35 mg/1 of antibiotic. Filtration is used to remove mycelial biomass from fermentation broth. The filtration may be subjected to filter aided polymers. Neutralisation of penicillin at pH 2-3 is required. Amyl acetate or butyl acetate is used as an organic solvent to remove most of the product from the fermentation broth. Finally, penicillin is removed as sodium penicillin and precipitated by a butanol-water mixture. [Pg.182]

The Claisen condensation of t-butyl acetate with a methyl ester is a general route for the preparation of complex P-ketoesters.4 The reaction requires an excess of the enolate of t-butyl acetate to rapidly deprotonate the product and prevent tertiary alcohol formation. Some workers have also used excess LDA or t-butoxide for this purpose. [Pg.96]

Countercurrent flow has advantages in product and thermodynamically limited reactions. Catalytic packings (see Figure 9. Id) are commonly used in that mode of operation in catalytic distillation. Esterification (methyl acetate, ethyl acetate, and butyl acetate), acetalization, etherification (MTBE), and ester hydrolysis (methyl acetate) were implemented on an industrial scale. [Pg.196]

DMSO or other sulfoxides react with trimethylchlorosilanes (TCS) 14 or trimefhylsilyl bromide 16, via 789, to give the Sila-Pummerer product 1275. Rearrangement of 789 and further reaction with TCS 14 affords, with elimination of HMDSO 7 and via 1276 and 1277, methanesulfenyl chloride 1278, which is also accessible by chlorination of dimethyldisulfide, by treatment of DMSO with Me2SiCl2 48, with formation of silicon oil 56, or by reaction of DMSO with oxalyl chloride, whereupon CO and CO2 is evolved (cf also Section 8.2.2). On heating equimolar amounts of primary or secondary alcohols with DMSO and TCS 14 in benzene, formaldehyde acetals are formed in 76-96% yield [67]. Thus reaction of -butanol with DMSO and TCS 14 gives, via intermediate 1275 and the mixed acetal 1279, formaldehyde di-n-butyl acetal 1280 in 81% yield and methyl mercaptan (Scheme 8.26). Most importantly, use of DMSO-Dg furnishes acetals in which the 0,0 -methylene group is deuter-ated. Benzyl alcohol, however, affords, under these reaction conditions, 93% diben-zyl ether 1817 and no acetal [67]. [Pg.201]

Figure 12.11 shows the pyrograms of vinyl paints from two monochromes by the Italian artist Piero Manzoni. The two paints are clearly different in composition acetic acid (peak 1) and benzene (peak 2) are present as common markers of the PVAc binder in both cases, but sample (a) contains dibutyl phthalate (peak 6) as external plasticizer. Peak 5 was recognized as bis(2-methylpropyl)-phthalate which is formed from dibutylphthalate isomerization, while butyl acetate (peak 3) and butyl benzoate (peak 4) are secondary products of recombination reactions occurring during the pyrolysis. Sample (b), however,... [Pg.353]

Addition reactions such as A-alkylation do not occur readily, and trimethylsilylmethylation of 3,4-diphenyl-l,2,5-thiadiazole 8 with trimethylsilylmethyl trifluoromethanesulfonate at 80°C occurred at N-2 < 1999J(P1) 1709>. The electron-rich 3-hydroxy-l,2,5-thiadiazole can be preferentially methylated on N-2 using trimethyl orthoacetate in toluene to afford the 2-methyl-l,2,5-thiadiazol-3-one in 69% yield <2002EJ01763>, although a mixture of 3-hydroxythiadiazole and neat trimethyl orthoacetate showed a 20 80 ratio of N- versus 0-alkylation products by H NMR. Treatment of 3-hydroxy-l,2,5-thiadiazole with /-butyl acetate under acid catalysis (Amberlyst 15) gave almost exclusively the A-alkylated compound <2002BMC2259>. [Pg.528]

In the case of t-butyl acetate, shown in reaction 41, three successive geminal hydrogen abstractions and insertions of 303 take place a product of reductive dimerization (306) is also formed in small yield626. [Pg.1153]

Prior to the actual metathesis event, coupling of 13 and 28 via an ester linkage was required (Scheme 2.3). Two methods were employed in this connection. The first involved the aforementioned two-carbon expansion of aldehyde 28. Thus, condensation of 28 with Rathke anion (lithiated tert-butyl acetate) generated a mixture of dia-stereomeric alcohols the major product was shown to have the requisite 3S configuration. TBS protection of ester 29 and subsequent ester hydrolysis generated the desired add, 31, which could be further esterified with alcohol 13 in 78 % yield. [Pg.14]

Acetaldehyde is made by the direct oxidation of ethylene, C2H4. It is a liquid at room temperature and is an intermediate in the production of acetic acid, acetic anhydride, butyl, and 2-ethyl hexyl alcohol. [Pg.237]

A variety of other carbon nucleophiles have been alkylated with alcohols including malonate esters, nitroaUcanes, ketonitriles [119, 120], barbituric acid [121], cyanoesters [122], arylacetonitriles [123], 4-hydroxycoumarins [124], oxi-ndoles [125], methylpyrimidines [126], indoles [127], and esters [128]. Selected examples are given in Scheme 35. Thus, benzyl alcohol 15 could be alkylated with nitroethane 147, 1,3-dimethylbarbituric acid 148, phenylacetonitrile 149, methyl-pyrimidine 150, and even f-butyl acetate 151 to give the corresponding alkylated products 152-156. [Pg.102]

The main use of -butyraldehyde is the production of -butyl alcohol by hydrogenation. -Butyl alcohol is used for ester synthesis, especially butyl acetate, acrylate, and methacrylate, common solvents for coatings. [Pg.178]

Methyl ethyl ketone is made mostly by the dehydrogenation of 5ec-butyl alcohol. A small amount is isolated as a by-product in acetic acid production by the oxidation of n-butane. [Pg.238]

The Lurgi gasifiers used by Sasol operate at "low" temperatures and consequently phenols, and "tars" are "distilled" from the coal at the top of the gasifier, and carried out with the raw gas. On condensation two liquid phases are formed, "tar" and "gas liquor" (water). The "tar acids" (phenol, cresols etc) are dissolved in the "gas liquor" which is fed to the Phenosolvan unit where the acids are recovered by counter current extraction with butyl acetate or diisopropyl ether. The crude tar acids are fractionated to yield phenol, ortho, meta and para cresol and xylenols. The phenol is further refined to produce a high purity, colourless and stable product. Phenol is used mainly in the production of formaldehyde resins while the cresols are used as flotation frothers and in the manufacture of pesticides etc. [Pg.32]

Product Vinyl acetate, butyl acrylate, and vinyl neodecanoate (60/15.3/24.7[w/w]) latex polymer... [Pg.4]

At ambient temperature a mixture consisting of the step 1 product (1.45 mol), 2,2-dimethyl-l,3-dioxolane-4-methanol (2.90mol), tetrabutylammonium hydrogensulfate (0.290 mol), and dimethylacetamide (2.11 kg) were treated with sodium hydroxide (3.63 mol). The mixture was then heated at 60°C for 3 hours and then recooled to ambient temperature and treated with hydroxylamine hydrochloride (2.32 mol). The mixture was stirred at 80°C for 2 hours and then cooled to 50°C. Thereafter, it was treated with butyl acetate (1.45 kg) and 1.45 liters of water and the organic layer... [Pg.117]

A flask was charged with the step 3 product (10.0 g), -butyl acetate (20.0 g), and 2,2 -azobisisobutyonitrile (150 mg) and then heated to 60°C for 20 hours. The reaction mixture was then cooled to ambient temperature and precipitated in 400 ml n-hexane. The polymer was isolated by filtration and then vacuum dried at 50°C for 18 hours and 8.9 g of a white solid product obtained. [Pg.561]


See other pages where Production butyl-acetate is mentioned: [Pg.380]    [Pg.67]    [Pg.182]    [Pg.377]    [Pg.307]    [Pg.334]    [Pg.268]    [Pg.96]    [Pg.253]    [Pg.130]    [Pg.380]    [Pg.142]    [Pg.67]    [Pg.289]    [Pg.125]    [Pg.125]    [Pg.118]    [Pg.432]    [Pg.213]    [Pg.356]    [Pg.244]    [Pg.118]    [Pg.310]   
See also in sourсe #XX -- [ Pg.99 , Pg.104 ]




SEARCH



Acetate production

Butyl Acetate

© 2024 chempedia.info