Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction metal gas

Goodison, D., Harris, R. J. and Goldenbaum, P., British Joint Corrosion Group Symposium on Metal-Gas Reactions in Atmospheres Containing CO2, London, March, (1%7)... [Pg.1000]

Cryogenic inorganic chemistry a review of metal-gas reactions as studied by matrix isolation infrared and Raman spectroscopic techniques, G. A. Ozin and A. Vander Voet, Prog. Inorg. Chem., 1975,19,105-172 (303). [Pg.25]

Process 2, the adsorption of the reactant(s), is often quite rapid for nonporous adsorbents, but not necessarily so it appears to be the rate-limiting step for the water-gas reaction, CO + HjO = CO2 + H2, on Cu(lll) [200]. On the other hand, process 4, the desorption of products, must always be activated at least by Q, the heat of adsorption, and is much more apt to be slow. In fact, because of this expectation, certain seemingly paradoxical situations have arisen. For example, the catalyzed exchange between hydrogen and deuterium on metal surfaces may be quite rapid at temperatures well below room temperature and under circumstances such that the rate of desorption of the product HD appeared to be so slow that the observed reaction should not have been able to occur To be more specific, the originally proposed mechanism, due to Bonhoeffer and Farkas [201], was that of Eq. XVIII-32. That is. [Pg.720]

Oxo Synthesis. Ad of the synthesis gas reactions discussed to this point are heterogeneous catalytic reactions. The oxo process (qv) is an example of an industriady important class of reactions cataly2ed by homogeneous metal complexes. In the oxo reaction, carbon monoxide and hydrogen add to an olefin to produce an aldehyde with one more carbon atom than the original olefin, eg, for propjiene ... [Pg.166]

Chlorination. In some instances, the extraction of a pure metal is more easily achieved from the chloride than from the oxide. Oxide ores and concentrates react at high temperature with chlorine gas to produce volatile chlorides of the metal. This reaction can be used for common nonferrous metals, but it is particularly useful for refractory metals like titanium (see Titanium and titanium alloys) and 2irconium (see Zirconium and zirconium compounds), and for reactive metals like aluminum. [Pg.165]

Easily decomposed, volatile metal carbonyls have been used in metal deposition reactions where heating forms the metal and carbon monoxide. Other products such as metal carbides and carbon may also form, depending on the conditions. The commercially important Mond process depends on the thermal decomposition of Ni(CO)4 to form high purity nickel. In a typical vapor deposition process, a purified inert carrier gas is passed over a metal carbonyl containing the metal to be deposited. The carbonyl is volatilized, with or without heat, and carried over a heated substrate. The carbonyl is decomposed and the metal deposited on the substrate. A number of papers have appeared concerning vapor deposition techniques and uses (170—179). [Pg.70]

Precious Meta.1 Ca.ta.lysts, Precious metals are deposited throughout the TWC-activated coating layer. Rhodium plays an important role ia the reduction of NO, and is combiaed with platinum and/or palladium for the oxidation of HC and CO. Only a small amount of these expensive materials is used (31) (see Platinum-GROUP metals). The metals are dispersed on the high surface area particles as precious metal solutions, and then reduced to small metal crystals by various techniques. Catalytic reactions occur on the precious metal surfaces. Whereas metal within the crystal caimot directly participate ia the catalytic process, it can play a role when surface metal oxides are influenced through strong metal to support reactions (SMSI) (32,33). Some exhaust gas reactions, for instance the oxidation of alkanes, require larger Pt crystals than other reactions, such as the oxidation of CO (34). [Pg.486]

Fumed silicas (Si02). Fumed silicas are common fillers in polychloroprene [40], natural rubber and styrene-butadiene rubber base adhesives. Fumed silicas are widely used as filler in several polymeric systems to which it confers thixotropy, sag resistance, particle suspension, reinforcement, gloss reduction and flow enhancement. Fumed silica is obtained by gas reaction between metallic silicon and dry HCl to rend silica tetrachloride (SiCU). SiC is mixed with hydrogen and air in a burner (1800°C) where fumed silica is formed ... [Pg.633]

It is apparent (Fig. 1.21) that at potentials removed from the equilibrium potential see equation 1.30) the rate of charge transfer of (a) silver cations from the metal to the solution (anodic reaction), (b) silver aquo cations from the solution to the metal (cathodic reaction) and (c) electrons through the metallic circuit from anode to cathode, are equal, so that any one may be used to evaluate the rates of the others. The rate is most conveniently determined from the rate of transfer of electrons in the metallic circuit (the current 1) by means of an ammeter, and if / is maintained constant it can eilso be used to eveduate the extent. A more precise method of determining the quantity of charge transferred is the coulometer, in which the extent of a single well-defined reaction is determined accurately, e.g. by the quantity of metal electrodeposited, by the volume of gas evolved, etc. The reaction Ag (aq.) -t- e = Ag is utilised in the silver coulometer, and provides one of the most accurate methods of determining the extent of charge transfer. [Pg.80]

Plating is carried out in a closed system whose atmosphere is adjusted to contain the metal-gas and a second gas which may be an inert diluent or a reactive gas (as in 1 above). is heated, for example by high frequency, and this then initiates deposition of M, by one of the above steps. Spent reaction products are exhausted and where possible reclaimed and recycled. [Pg.440]

Properties of deposits Deposits are often more adherent, coherent and temperature-stable than those produced by alternative coating methods. Adhesion can be adversely affected by spurious reactions between the metal-gas and impurities in (e.g. as observed during the deposition of molybdenum on steel ) and also where the thermal coefficients of expansion of A/, and differ widely. The purity of reactants can affect that of A/,. crystal size is reduced by raising the reactant concentrations, or by lowering the plating temperature. [Pg.441]

The kinetics of a mixed platinum and base metal oxide catalyst should have complementary features, and would avoid some of the reactor instability problems here. The only stirred tank reactor for a solid-gas reaction is the whirling basket reactor of Carberry, and is not adaptable for automotive use (84) A very shallow pellet bed and a recycle reactor may approach the stirred tank reactor sufficiently to offer some interest. [Pg.122]

Changes in the composition of gaseous products as reaction proceeds may make definition of the fractional decomposition, a, difficult. For example, product CO and residual carbon may be capable of reducing a metallic oxide, particularly at high a and the catalytic properties of an accumulating solid product may result in promotion of secondary gas reactions. [Pg.209]

This electrochemical reaction contains the elementary step (4.1) and under conditions of backspillover can be considered to take place over the entire metal/gas interface including the tpb.1,15 18 This is usual referred to as extension of the electrochemical reaction zone over the entire metal/gas interface. But even under these conditions it must be noted that the elementary charge transfer step 4.1 is taking place at the three-phase-boundaries (tpb). [Pg.116]

This perturbation is then propagated via the spatial constancy of the Fermi level Ef throughout the metal film to the metal-gas interface G, altering its electronic properties thus causing ion migration and thus influencing catalysis, i.e. catalytic reactions taking place on the metal-gas interface G. [Pg.211]

Very simply these equations are valid as long as ion backspillover from the solid electrolyte onto the gas-exposed electrode surfaces is fast relative to other processes involving these ionic species (desorption, reaction) and thus spillover-backspillover is at equilibrium, so that the electrochemical potential of these ionic species is the same in the solid electrolyte and on the gas exposed electrode surface. As long as this is the case, equation (5.29) and its consequent Eqs. (5.18) and (5.19) simply reflect the fact that an overall neutral double layer is established at the metal/gas interface. [Pg.225]

As already analysed in Chapter 5, once the backspillover species originating from the solid electrolyte have migrated at the metal/gas interface, then they act as normal (chemical) promoters for catalytic reactions. For example, Lambert and coworkers via elegant use of XPS18 have shown that the state of sodium introduced via evaporation on a Pt surface interfaced with P"-A1203 is indistinguishable from Na5+ introduced on the same Pt surface via negative (cathodic) potential application. [Pg.283]

The reason is that the backspillover ions desorb to the gas phase directly from the three-phase-boundaries or react directly at the three-phase-boundaries (electrocatalysis, A=l) before they can migrate on the gas-exposed electrode surface and promote the catalytic reaction. The limits of NEMCA are set by the limits of stability of the effective double layer at the metal/gas interface. [Pg.537]

The reasons are analyzed in detail in Chapter 5. The equation is valid as long as the effective double layer is present at the metal/gas interfaces of the working and reference electrodes. Deviations are basically observed when ion backspillover is not faster than ion desorption or reaction (see also section 11.3). [Pg.539]

The most common deposition reaction uses hydrolysis of a metal halide, such as HfC, in excess hydrogen (the water-gas reaction) PI... [Pg.300]

Unstabilized zirconia is deposited by the reaction of the metal halide with CO2 and hydrogen (the water-gas reaction) at 900-1200°C 01... [Pg.312]

By using 10 mol% of 51, MS4A, and t-BuSH, the desired product 52 was obtained in up to 98% ee in 80% yield. A complementary role by two metals (Ga and Li) in activating and positioning both of the substrates has been proposed. The MS4A (sodium aluminosilicate) accelerated the reaction however, the actual role of this additive was not clearly defined, although the possibilty that MS4A delivers Na ions was pointed out. Tomioka et al. reported the asymmetric Michael addition of an aromatic thiol to a,P-unsaturated esters in the presence of 8 mol% of 53 to provide 54 in up to 97% ee in 99% yield (Eq. 7.40) [47]. [Pg.232]


See other pages where Reaction metal gas is mentioned: [Pg.487]    [Pg.315]    [Pg.22]    [Pg.152]    [Pg.546]    [Pg.487]    [Pg.315]    [Pg.22]    [Pg.152]    [Pg.546]    [Pg.85]    [Pg.57]    [Pg.508]    [Pg.430]    [Pg.70]    [Pg.172]    [Pg.150]    [Pg.17]    [Pg.20]    [Pg.20]    [Pg.1136]    [Pg.94]    [Pg.97]    [Pg.116]    [Pg.343]    [Pg.261]    [Pg.230]    [Pg.87]    [Pg.380]   
See also in sourсe #XX -- [ Pg.17 ]

See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Metal Ga

Pure metal gas reactions

Solid-gas Reactions Involving Metal Carbonyl Clusters

Solid-gas reactions involving lightly stabilized transition metal clusters

Solid-gas reactions involving unsaturated transition metal clusters

The reactions of gases at very low pressures on heated metallic filaments

© 2024 chempedia.info