Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal complexes interphases

On the other hand, the presence of hydrophobic complexes is a prerequisite for partitioning and diffusion of metals into the lipid bilayer. In the following paragraphs, various types of metal complexes will be discussed, which are relevant to the interactions of metals in aquatic systems. The role of these various types of metal complexes with respect to interactions at the biological interphases will be systematically examined. [Pg.208]

INTERACTION OF HYDROPHOBIC METAL COMPLEXES AND ORGANOMETALLIC COMPOUNDS WITH BIOLOGICAL INTERPHASES... [Pg.245]

It is clear that the adsorption of species in the metal-solution interphase region needs a subtle analysis. The unraveling of the complex situation and the building up of a basic picture of the accumulation and depletion of species at an electrified interface is one of the principal achievements of the new electrochemistry and is largely due to the American electrochemist, Grahame. [Pg.126]

The starting point for such classification is the point of interference with the above sketched corrosion mechanism either in a phenomenological or in a mechanistic way, A simple system for classification, which will be discussed in more detail later, is based on whether the inhibitor interferes with the anodic or cathodic reaction. Thus inhibitors are classified as anodic or cathodic inhibitors. However, this distinction was shown to be too simplistic and a more complex classification was worked out by H. Fischer (JJ on the basis of where, instead of how, in the complex interphase of a metal-electrolyte system the inhibitor interferes with the corrosion reactions. The metal-electrolyte interphase can be visualized as consisting of (a) the interface per se, and (b) an electrolyte layer interposed between the Interface and the bulk of the electrolyte. On this basis Fisher distinguished as shown in Table 1, between "Interface Inhibition" and "Electrolyte Layer Inhibition."... [Pg.266]

The vast majority of corrosion inhibitors in neutral environment as well as a number of acid corrosion inhibitors form protective 3D films on the metal surface ( interphase inhibition [4]). These films may consist of adsorbate multilayers, ox-ide/hydroxides, salts, or reaction products formed by interaction of the inhibitor with solution species on or near the corroding metal surface (e.g. dissolved metal ions). The type, structure, and thickness of the inhibiting films are strongly influenced by the environmental conditions. The interphase films act as a physical barrier that blocks or retards transport processes and the kinetics of the corrosion reactions at the metal surface. The inhibitive properties could, in some cases, be correlated with the chemical stability of the corresponding insoluble complexes as well as with the solubihty, adsorbabOity, and hydrophobicity of the inhibitor molecules [35]. Often, other ions from the electrolyte, such as... [Pg.450]

Figure 5.6 Representation of an interphase immobilized coordinative metal complex catalyst containing reactive groups (FG-M), - support/matrix, - spacer, -... Figure 5.6 Representation of an interphase immobilized coordinative metal complex catalyst containing reactive groups (FG-M), - support/matrix, - spacer, -...
In the following section, the role of the various types of complexes mentioned above will be discussed with regard to various mechanisms of interactions at biological interphases. It is clear that metal ions and hydrophilic complexes cannot distribute into the membrane lipid bilayer or cross it. The role of hydrophilic ligands has thus to be discussed in relation to binding of metals by biological ligands. In contrast, hydrophobic complexes may partition into the lipid bilayer of membranes (see below, Section 6). [Pg.241]

To describe the dynamics of metals at biological interphases in the presence of various ligands, the kinetics of dissociation of the complexes have to be taken into account in relation to the diffusion and to the uptake kinetics ([14] and Chapters 3 and 10 in this volume). Based on kinetic criteria, labile and inert complexes can be distinguished as limiting cases with regard to biological uptake ([14] and Chapter 3, this volume). [Pg.242]

There is an abundant research on the interactions of HIOCs and metals with biological interphases, in which organic chemicals and metals are treated independently. However, few studies have considered the role of combinations of HIOCs with metals. There is a particular lack of mechanistic approaches. With regard to the metals, the FIAM has been very successful, but it remains to be shown under which conditions additional interactions, such as partitioning of hydrophobic complexes and uptake of specific complexes, are important for metal uptake and toxic effects. In particular, the role of hydrophobic complexes with both natural and pollutant compounds in natural waters has not yet been fully elucidated, since neither their abundance nor their behaviour at biological interphases are known in detail. [Pg.251]

The concept sounds attractive, but there is a flaw in the explanation. Assuming an equilibrium situation between the two bulk phases and the interphase, complex formation at the interfacial region requires the same complexes are formed also in the bulk phases. Consequently, in order to produce a considerable amount of the mixed species MA, xBx in the liquid-liquid boundary layer some B must be dissolved in the aqueous, as weU as some A in the organic phase. Since by definition this condition is not met, the relative amount of M present at the interphase region as MAn xBx must be negligible. However, now the metal ion will be distributed between MA in the aqueous phase and MBp in the organic layer (n and p are the... [Pg.140]

Jote the greater complexity of defining adsorption here in studies of electric double layers than, e.g., for metal-gas systems. With electric double layers, one is concerned with the whole interphasial region. The total adsorption is the sum of the increases of concentration over a distance, which in dilute solutions may extend for tens of nanometers. Within this total adsorption, there are, as will be seen, various types of adsorptive situations, including one, contact adsorption, which counts only Arose ions in contact with the electronically conducting phase (and is Aren, like the adsorption referred to in metal-gas systems, the particles on Are surface). Metal-gas systems deal with interfaces, one might say, whereas metal-electrolyte systems deal primarily with interphases and only secondarily with interfaces. [Pg.128]

The substrate/silane interphase and the silane/matrix interphase are equally important in considering the mechanism of reinforcement by silane coupling agents in composites. The mineral oxide/silane interphase is more well defined than a metal/silane or a silane/matrix interphase. For example, in the case of a metal substrate, surface oxides may dissolve into the silane layer or form a complex. In the case of the silane/matrix interphase, a diffuse boundary layer may exist due to dispersion of physisorbed silanes in the matrix phase or penetration of the matrix resin into chemisorbed silane layers. Many features of the interaction of a silane coupling agent with a polymer matrix are specific to the system, and thus the chemistry of the silane/matrix interphase must be characterized and defined for each system. [Pg.219]

This ratio depends on the distance of the activated complex from the metal surface and on the shape of the dependence of potential on distance in the interphase it does not depend on the value of ( ). Thus, P can be independent of potential, even if the variation of the potential inside the interphase in nonlinear. [Pg.75]

It is assumed that the best catalytic effect can be achieved if the pA a or pA), value of the interphase material is close to 7 [71]. Some weak ion-exchange groups such as tertiary amines, phosphoric acid, carboxylic acids, or pyridine show the required dissociation constant or p ta-values. Certain heavy metal ion complexes, such as chromium(lll)- or iron(Ill)-complexes, provide the required catalytic water dissociation effect. In principle, there are many more suitable metal ions available. The metal ions or complexes are immobilized by either including an insoluble salt in the casting solution of the interface layer between the ion permeable layers or by converting a soluble form by a follow-up treatment [45]. An additional requirement for the catalytic material is to be effective and stable for a long period. It must also remain in the interphase, where it is the most active, for the anticipated lifetime of the membrane. [Pg.587]


See other pages where Metal complexes interphases is mentioned: [Pg.605]    [Pg.40]    [Pg.56]    [Pg.208]    [Pg.124]    [Pg.222]    [Pg.168]    [Pg.26]    [Pg.348]    [Pg.446]    [Pg.96]    [Pg.207]    [Pg.102]    [Pg.477]    [Pg.214]    [Pg.6]    [Pg.73]    [Pg.210]    [Pg.634]    [Pg.366]    [Pg.206]    [Pg.244]    [Pg.245]    [Pg.15]    [Pg.99]    [Pg.96]    [Pg.79]    [Pg.195]    [Pg.202]    [Pg.290]    [Pg.369]    [Pg.293]    [Pg.283]   
See also in sourсe #XX -- [ Pg.245 , Pg.246 ]




SEARCH



Hydrophobic metal complexes interphases

Interphase

Interphases

© 2024 chempedia.info