Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal-carbene complexes reaction with ylides

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

Ethers, sulfides, amines, carbonyl compounds, and imines are among the frequently encountered Lewis bases in the ylide formation from such metal carbene complex. The metal carbene in the ylide formation can be divided into stable Fisher carbene complex and unstable reactive metal carbene intermediates. The reaction of the former is thus stoichiometric and the latter is usually a transition metal complex-catalyzed reaction of a-diazocarbonyl compounds. The decomposition of a-diazocarbonyl compounds with catalytic transition metal complex has been the most widely used approach to generate reactive metal carbenes. For compressive reviews, see Refs 1,1a. [Pg.151]

The oxygen as heteroatom in ethers or carbonyl compounds is weak to moderate Lewis base. Nevertheless, a highly reactive metal carbene complex can interact with the oxygen to generate oxygen ylide. The interaction between ether and metal carbene functional groups is believed to be rather weak as demonstrated by the facts that other metal carbene reactions, such as G-H insertion and cyclopropanation, can proceed in ethereal solvents." These experiments demonstrate that the formation of the metal ylide is much less favored in the equilibrium shown in Equation (1). ... [Pg.152]

In addition to copper and rhodium catalysts commonly used in the generation of metal carbene complexes, other transition metals have also been explored in the diazo decomposition and subsequent ylide generation.Che and co-workers have recently studied ruthenium porphyrin-catalyzed diazo decomposition and demonstrated a three-component coupling reaction of a-diazo ester with a series of iV-benzylidene imines and alkenes to form functionalized pyrrolidines in excellent diastereoselectivities (Scheme 20). ... [Pg.173]

Alcaide, B., Casarrubios, L., Dominguez, G., Sierra, M. A. Reactions of group 6 metal carbene complexes with ylides and related dipolar species. Curr. Org. Chem. 1998, 2, 551-574. [Pg.579]

In certain cases, the metal-carbene complex derived from an unsaturated diazocarbonyl compound can be trapped intramolecularly in reactions other than cyclopropanation, e.g. C-H insertion and ylide formation by interaction with a heteroatom with a lone pair. Since the chemoselectivity is influenced by the electrophilicity of the metal-carbene complex, it may be controlled in favorable cases by the catalyst metal and its ligands or by the second substituent at the carbenoid carbon atom. [Pg.488]

These carbene (or alkylidene) complexes are used for various transformations. Known reactions of these complexes are (a) alkene metathesis, (b) alkene cyclopropanation, (c) carbonyl alkenation, (d) insertion into C-H, N-H and O-H bonds, (e) ylide formation and (f) dimerization. The reactivity of these complexes can be tuned by varying the metal, oxidation state or ligands. Nowadays carbene complexes with cumulated double bonds have also been synthesized and investigated [45-49] as well as carbene cluster compounds, which will not be discussed here [50]. [Pg.6]

The q1-coordinated carbene complexes 421 (R = Ph)411 and 422412) are rather stable thermally. As metal-free product of thermal decomposition [421 (R = Ph) 110 °C, 422 PPh3, 105 °C], one finds the formal carbene dimer, tetraphenylethylene, in both cases. Carbene transfer from 422 onto 1,1-diphenylethylene does not occur, however. Among all isolated carbene complexes, 422 may be considered the only connecting link between stoichiometric diazoalkane reactions and catalytic decomposition [except for the somewhat different results with rhodium(III) porphyrins, see above] 422 is obtained from diazodiphenylmethane and [Rh(CO)2Cl]2, which is also known to be an efficient catalyst for cyclopropanation and S-ylide formation with diazoesters 66). [Pg.240]

Metallic groups as in case (c) lead to electrophilic or even carbocation-like carbene complexes. Typical examples are Fischer-type carbene complexes [e.g. (CO)5Cr=C(Ph)OMe] and the highly reactive carbene complexes resulting from the reaction of rhodium(II) and palladium(II) carboxylates with diazoalkanes. Also platinum ylides [1,2], resulting from the reaction of diazoalkanes with platinum(Il) complexes, have a strong Pt-C o bond but only a weak Pt-C 7t bond. In situation (d) the interaction between the metal and the carbene is very weak, and highly reactive complexes showing carbene-like behavior result. Similar to uncomplexed carbenes. [Pg.2]

The most important synthetic access to acceptor-substituted carbene complexes is the reaction of ylides with electrophilic, coordinatively unsaturated transition metal complexes (Figure 4.1 see also Section 3.1.3). [Pg.171]

As shown in Figure 4.1, the initial step of the conversion of an ylide into a carbene complex is an electrophilic attack at the ylide. Reactions of this type will, therefore, occur more readily with increasing nucleophilicity of the ylide and increasing electrophilicity of the metal complex L M. Complexes which efficiently catalyze the decomposition of even weakly nucleophilic ylides can easily react with other nucleophiles also, such as amines or thiols. This has to be taken into account if reactions with substrates containing such strongly nucleophilic functional groups are to be performed. [Pg.175]

Ylide formation, and hence X-H bond insertion, generally proceeds faster than C-H bond insertion or cyclopropanation [1176], 1,2-C-H insertion can, however, compete efficiently with X-H bond insertion [1177]. One problem occasionally encountered in transition metal-catalyzed X-H bond insertion is the deactivation of the (electrophilic) catalyst L M by the substrate RXH. The formation of the intermediate carbene complex requires nucleophilic addition of a carbene precursor (e.g. a diazocarbonyl compound) to the complex Lj,M. Other nucleophiles present in the reaction mixture can compete efficiently with the carbene precursor, or even lead to stable, catalytically inactive adducts L M-XR. For this reason carbene X-H bond insertion with substrates which might form a stable complex with the catalyst (e.g. amines, imidazole derivatives, thiols) often require larger amounts of catalyst and high reaction temperatures. [Pg.194]

We have previously stated that an ylide could be considered the coupling product of a singlet carbene with a nucleophile. Therefore, it seems logical that the reaction of a metallic carbene with a nucleophile would give a metal bonded ylide and, in fact, this is a quite useful method to prepare metallated ylides. Even more, in some cases coordinated ylides have been used as masked caibenes [85]. Complexes (26) (Scheme 9, M = Cr, W), which contain a pyridinium yhde, are conveniently prepared by reaction of the corresponding carbenes [(CO)5M=C(OEt) R] with 1,2- or 1,4-dihydropyridines. During the reaction an unprecedented hydride... [Pg.23]

Closely related with the synthesis of ylides from carbenes is the use of ylides as carbene transfer reagents (CTR), that is processes in which the ylide is cleaved homolytically, liberating the nucleophile and the carbene, which could remain both coordinated to the metal or not (Scheme 10). Diphosphirane (34) can be obtained from the diphosphene by reaction with sulfur ylide Me2S(0)=CH2, which behave as a carrier of the CH2 unit [95]. Recent work of Milstein et al. shows that sulfur ylides decompose in the presence of Rh derivatives with vacant coordination sites affording Rh(l)-carbene complexes [96, 97]. Complexes (35-37) can be obtained from... [Pg.24]

One of typical reactions of the Fisher-type metal carbene is interaction of the electron-deficient carbenic carbon with a pair of non-bonding electrons contributed by a Lewis base (B ) to generate a metal complex-associated ylide or a free ylide. The ylide intermediate thus generated is usually highly reactive and undergoes further reactions to give stable products (Figure 1). [Pg.151]

Sulfonium ylides generated through base-promoted deprotonation of sulfonium salt have been extensively studied. The reaction of sulfides with a diazo carbonyl compound in the presence of a transition metal catalyst is an alternative approach to obtain sulfonium ylides. Sulfonium ylides are more stable than the corresponding oxonium ylides. Stable sulfonium ylides generated by the reaction of an Rh(ii) carbene complex with thiophene have been reported (Figure 5). ... [Pg.164]

The metal-free eyclobutane-1,2-dioxime can be generated by oxidative displacement. It is interesting to note that, unlike ketene dimerization, head-to-head dimerization takes place here. The chromium ketenimine complex 20 is prepared by reaction of the Fischer-type chromium carbene complex with alkyl isocyanides.60 A cyclobutane-1,2,3,4-tetraimine 24 has been reported from the reaction of the ketenimine phosphonium ylide 22.61 Bisimine 23 has been proposed as the intermediate in this transformation. [Pg.99]

Apart from this feature there are many similarities between ylides and carbene complexes, primarily among the structural criteria. The carbene carbon may be, but not necessarily, in a planar configuration, and the M—C bonding indicates some multiple bonding character just as in most of the ylides. On the other hand, carbene transfer reactions have been observed with ylides [e.g., Eq. (36)3, indicating that the carbene complex formalism can, indeed, be successfully applied with ylides. There is hope, therefore, for a fruitful symbiosis of ylide and carbene complex chemistry, which may soon become complementary as more data become available from this new area of transition metal chemistry. [Pg.240]


See other pages where Metal-carbene complexes reaction with ylides is mentioned: [Pg.687]    [Pg.160]    [Pg.165]    [Pg.166]    [Pg.167]    [Pg.171]    [Pg.171]    [Pg.175]    [Pg.131]    [Pg.136]    [Pg.20]    [Pg.687]    [Pg.316]    [Pg.534]    [Pg.316]    [Pg.369]    [Pg.362]    [Pg.244]    [Pg.262]    [Pg.277]    [Pg.260]    [Pg.178]    [Pg.152]    [Pg.156]    [Pg.340]    [Pg.9]    [Pg.248]    [Pg.4098]    [Pg.4110]    [Pg.55]    [Pg.53]   
See also in sourсe #XX -- [ Pg.206 , Pg.223 ]




SEARCH



Carbene complexes reactions

Carbene reactions

Carbene with ylides

Carbene-ylide

Carbenes metal carbene complex

Carbenes metal complexes

Carbenes reactions

Complexes metal carbene

Metal carbenes

Metal complexes reactions

Metal ylides

Reaction with carbenes

With Carbenes

With metal complexes, reactions

Ylide complexes

Ylide reaction

Ylides carbene complexes

Ylides reaction

Ylides reaction with

© 2024 chempedia.info