Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbene with ylides

For a review on reactions of Group 6 metal carbenes with ylides and related dipolar species see Alcaide B, Cassarubios L, Dominguez G, Sierra MA (1998) Curr Org Chem 2 551... [Pg.202]

In either neat dioxane or THF, carbene-ether ylides are observed as a broad IR absorption band between 1560 and 1610 cm , distinct from the IR bands of the free carbenes. With discrete spectroscopic signatures for the free carbene and its corresponding ether ylides, TRIR spectroscopy was used to confirm that the effects described above with dilute ether in Freon-113 were due to specific solvation of the carbene (Scheme 4.6, Reaction 2) rather than a pre-equilibration with the coordinating solvent (Scheme 4.6, Reaction 3) or reactivity of the ylide itself (Scheme 6, Reaction 4). In Freon-113 containing 0.095M THF simultaneous TRIR observation of both the free carbene (x = ca. 500 ns) and the carbene-THF ylide (x = ca. 5ps) was possible7 The observation that lifetimes of these species were observed to be so different conclusively demonstrates that the free carbene and the carbene-THF ylide are not in rapid equilibrium and that Reaction 3 of Scheme 4.6 is not operative. By examining the kinetics of the carbene 34 at 1635 cm directly in Freon-113 with small amounts of added dioxane, it was observed that the rate of reaction with TME was reduced, consistent with Reaction 2 (and not Reaction 4) of Scheme 4.6. [Pg.200]

From the results with the isolable ylides 350, it can be concluded that the fate of less stable, non-isolated sulfonium ylides depends dramatically on their respective substituents 336,338). Thus, the outcome of these reactions is programmed at the ylide stage and not during interaction of a presumed metal carbene with the sulfur-containing substrate. [Pg.212]

Thiols like pyridine-2-thiol yield (carbene)gold thiolates, and onium salts give cationic (carbene)gold ylide complexes, isolated and characterized as the perchlorates.170 The reaction of dithiocatechol with (cyclohexylisocya-nide)gold chloride affords a carbene complex [(CyNC)AuC(NHCy)2]+Cl-, which co-crystallizes with a neutral tetranuclear complex [(CyNCAu)2Au2(S2C6H4)2].224... [Pg.287]

The thermodynamic data presented in Table XYI are calculated for the temperature T=0K. Note that the entropy factor favors betaine decomposition via directions A and B at higher temperatures. The reactions of organoelement analogs of carbenes with phosphorus and arsenic ylides are yet poorly studied. The presented above results of calculations allow an optimistic prognosis about the possibility of developing a new method for the synthesis of elementaolefins R2E14=CH2 (E14 = Si, Ge, Sn) on the basis of these reactions. [Pg.87]

The reaction of carbenes with alcohols can proceed by various pathways, which are most readily distinguished if the divalent carbon is conjugated to a tt system (Scheme 5). Both the ylide mechanism (a) and concerted O-H insertion (b) introduce the alkoxy group at the originally divalent site. On the other hand, carbene protonation (c) gives rise to allylic cations, which will accept nucleophiles at C-l and C-3 to give mixtures of isomeric ethers. In the case of R1 = R2, deuterated alcohols will afford mixtures of isotopomers. [Pg.4]

Although we are not specifically concerned here with kpp and the kinedcs of carbene-pyridine ylide formation, we note that the magnitude of is directly related to the structure and reactivity of the carbene. fcpyr ranges from 105 M s-1 for ambiphilic alkoxycarbenes to 109-10I° M-1 s 1 for electrophilic halocarbenes or alkylcarbenes. Very nucleophilic carbenes (MeOCOMe) do not react with pyridine.13... [Pg.55]

The pyridine ylide method also allows determination of the rate constants for the intermolecular reactions of carbenes with alkenes, alcohols, or other carbene... [Pg.55]

The heats and rates of reaction of carbenes with substituted pyridines to form ylides have been measured and used to calculate the ylides heats of formation.54 The heats of reaction of methylchloro- and phenylchlorocarbene with were found to correlate well with the pXa s and proton affinities of the pyridines. However, the correlation is not good for sterically demanding... [Pg.263]

Cyclodditions to Carbonyl Derivatives. Electrophilic transient carbenes are known to react with carbonyl derivatives through the oxygen lone pair to give carbonyl ylides 26.43 These 1,3-dipolar species are usually characterized by [3 + 2]-cycloaddition reactions or can even be isolated44 a small amount of the corresponding oxiranes is sometimes obtained.433,45 To date, no reaction of transient nucleophilic carbenes with carbonyl derivatives has been reported. [Pg.190]

Cyclodditions to Carbon-Heteroatom Triple Bonds. Transient electrophilic carbenes are known to react with nitriles to give transient46 or even stable nitrile ylides 30.47 No reaction of transient nucleophilic carbenes with nitriles has been reported. [Pg.191]

Non-heteroatom-substituted carbene complexes can also be generated by treatment of electrophilic transition metal complexes with ylides (e.g. diazoalkanes, phosphorus ylides, nucleophilic carbene complexes, etc. Section 3.1.3). Alkyl complexes with a leaving group in the a-position are formed as intermediates. These alkyl complexes can undergo spontaneous release of the leaving group to yield a carbene complex (Figure 3.2). [Pg.77]

Some transition metal complexes readily react with ylides to yield electrophilic carbene complexes. If these complexes can transfer the carbene to a given substrate in such a way that the original transition metal complex is regenerated then this complex can be used as a catalyst for the transformation of the ylide (carbene precursor) into carbene-derived products (Figure 3.35). [Pg.114]

Fig. 3.35. Mechanism for the catalyzed cyclopropanation with ylides as carbene complex precursors. Fig. 3.35. Mechanism for the catalyzed cyclopropanation with ylides as carbene complex precursors.
Decarboxylation of 1,3-dimethylorotic acid in the presence of benzyl bromide yields 6-benzyl-1,3-dimethyluracil and presumably involves a C(6) centered nucleophilic intermediate which could nonetheless have either a carbene or ylide structure. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry has been used to explore the gas-phase reactions of methyl nitrate with anions from active methylene compounds anions of aliphatic ketones and nitriles react by the 5n2 mechanism and Fco reactions yielding N02 ions are also observed nitronate ions are formed on reaction with the carbanions derived from toluenes and methylpyridines. [Pg.381]

We have previously stated that an ylide could be considered the coupling product of a singlet carbene with a nucleophile. Therefore, it seems logical that the reaction of a metallic carbene with a nucleophile would give a metal bonded ylide and, in fact, this is a quite useful method to prepare metallated ylides. Even more, in some cases coordinated ylides have been used as masked caibenes [85]. Complexes (26) (Scheme 9, M = Cr, W), which contain a pyridinium yhde, are conveniently prepared by reaction of the corresponding carbenes [(CO)5M=C(OEt) R] with 1,2- or 1,4-dihydropyridines. During the reaction an unprecedented hydride... [Pg.23]

The attack of nucleophiles on unsaturated ligands or functional groups bonded to metallic centers, exemplified in Scheme 9 (reaction of metallic carbenes with phosphines or pyridines) or in Scheme 15 (Wittig reaction) can be extended to a wide variety of reagents. Two main groups of reactions can be considered (1) those in which the nucleophile is an ylide and (2) those in which the nucleophile is a phosphine (and less commonly other nucleophiles). Usually these reactions give metallated ylides (type III), that is, species in which the ylide substituents are metallic centers. [Pg.28]

The theoretical section introduced divalent carbon(O) compounds as molecules CL2 where the ligand L is a ct donor. In principle this task can be fulfilled by various neutral group 15 compounds (N2, nitriles, amines, phosphanes, arsanes, etc.), neutral group 16 compounds (sulfides, selenides, etc.) as well as by divalent C(II) with a free pair of electrons at a carbon atom, such as isonitriles, NHCs, carbenes, CO, ylides, etc. The neutral and isolable compound C2PPh3 [14,15] may also serve as a donor L to stabilize a carbon atom. [Pg.56]

The interaction of this carbene with a range of nitriles was also studied by LFP (51). In only one case, that of the nitrile 101, was the concentration of the nitrile ylide high enough to give a measurable absorption spectmm. In the presence of 101 it was found that the carbene absorption at 370 nm decayed with the appearance of a weak absorption in the 420-490-nm range ( max 440 nm), which was attributed to the nitrile ylide 102. [Pg.488]

Because of the presence of a lone pair and a vacant orbital, singlet carbenes are supposed to be able to react with both Lewis bases and acids. Transient electrophilic carbenes are known to react with Lewis bases to give normal ylides (Scheme 8.19). For example, carbene-pyridine adducts have been spectroscopically characterized and used as a proof for the formation of carbenes,and the reaction of transient dihalogenocarbenes with phosphines is even a preparative method for C-dihalogeno phosphorus ylides. Little is known about the reactivity of transient carbenes with Lewis acids. [Pg.354]

With ylides carbene complexes usually undergo Wittig alkenation whereby the (OC)5 W fragment can formally play the role of the oxygen atom of the aldehyde or ketone (equation 94).318... [Pg.1056]

A number of minima corresponding to oxonium ylides and H-bonded structures were found on the potential-energy surface for reaction of singlet carbenes with water and alcohols." Laser flash photolysis revealed that the rates of reaction between cyclopentadienylidene or fluorenylidene and alcohols increased with alcohol acidity and had linear Bronsted plots with slopes of 0.061 and 0.082, respectively.100 These results point to protonation with a very early transition state or to concerted OH insertion. For tetrachlorocyclopentadienylidene, the results showed that ylide formation (100) is predominant. [Pg.236]

The cyclic ylide intermediate 366, as a 1,3-dipole, is generated by intramolecular reaction of Rh-carbene with the ketone in 365, and undergoes cycloaddition with n-bonds to give the adduct 367 [121]. When a-diazocarbonyls have additional unsaturation, domino cyclizations occur to produce polycyclic compounds. The Rh-carbene method offers a powerful tool for the construction of complex polycyclic molecules in short steps, and has been applied to elegant syntheses of a number of complex natural products. [Pg.345]

The oxonium ylide 390 is generated by the interaction of carbene with the unshared electron pair of the oxygen atom of ether 389, and subsequent sigmatropic rearrangement affords 391 [126]. The reaction was applied to the diastereoselective construction of 2,8-dioxabicyclo[3.2.1]octane, the core system 394 of zaragozic acid. The Rh-catalysed reaction of diazo ester 392 generates the bicyclic oxonium ylide 393 from the acetal, and its exocyclic 2,3-shift affords 394 [127]. [Pg.345]

Apart from this feature there are many similarities between ylides and carbene complexes, primarily among the structural criteria. The carbene carbon may be, but not necessarily, in a planar configuration, and the M—C bonding indicates some multiple bonding character just as in most of the ylides. On the other hand, carbene transfer reactions have been observed with ylides [e.g., Eq. (36)3, indicating that the carbene complex formalism can, indeed, be successfully applied with ylides. There is hope, therefore, for a fruitful symbiosis of ylide and carbene complex chemistry, which may soon become complementary as more data become available from this new area of transition metal chemistry. [Pg.240]

Similar to the abovementioned silver nhc coordination compounds, carbene chemistry has also been dominant in the field of gold organometallic chemistry. Noteworthy examples include a Au(PPh3)-compound derived from tetraaminoallene, that can be rationalised in terms of a dicarbene with ylide character and which, owing to the electron-rich character of the central carbon atom, offers the potential for dimetallation products.108 Non-activated allenes and alkynes have been found by Lavallo to be readily aminated by cationic carbene gold complexes.109 For this purpose, a 2,6-diisopropylphenyl functionalized cyclic alkylaminocarbene gold(I) complex... [Pg.174]

Sulfur ylides can also be prepared by the reaction of a carbene with a sulfide. [Pg.135]


See other pages where Carbene with ylides is mentioned: [Pg.209]    [Pg.31]    [Pg.56]    [Pg.907]    [Pg.25]    [Pg.341]    [Pg.152]    [Pg.153]    [Pg.156]    [Pg.175]    [Pg.784]    [Pg.1091]    [Pg.117]    [Pg.110]    [Pg.138]    [Pg.151]    [Pg.784]    [Pg.443]    [Pg.176]    [Pg.137]    [Pg.127]   
See also in sourсe #XX -- [ Pg.38 , Pg.42 , Pg.91 ]




SEARCH



Carbene-ylide

Metal-carbene complexes reaction with ylides

With Carbenes

© 2024 chempedia.info