Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenes metal carbene complex

Carbenes are defined as species containing divalent carbon [1], and they may display either electrophilic or nucleophilic reactivity depending on whether the two unshared electrons on the carbon center are unpaired (triplet carbene) or paired (singlet carbene). Metal-carbene complexes can be classified in a similar way based on their reactivity toward electrophiles and nucleophiles. The resonance forms shown in Fig. 4.1 define the limiting structures, and the formal charge on the carbene carbon indicates the preferred reactivity. Those that are nucleophilic at carbon are called Schrock-type complexes or alkylidenes, and they generally... [Pg.187]

Many other organometaUic compounds also react with carbonyl groups. Lithium alkyls and aryls add to the ester carbonyl group to give either an alcohol or an olefin. Lithium dimethyl cuprate has been used to prepare ketones from esters (41). Tebbe s reagent, Cp2TiCH2AlCl(CH2)2, where Cp = clyclopentadienyl, and other metal carbene complexes can convert the C=0 of esters to C=CR2 (42,43). [Pg.389]

MII Transition Metal Carbene Complexes (F. R. Kreissel, ed.), VCH,... [Pg.172]

The first reaction pathway for the in situ formation of a metal-carbene complex in an imidazolium ionic liquid is based on the well loiown, relatively high acidity of the H atom in the 2-position of the imidazolium ion [29]. This can be removed (by basic ligands of the metal complex, for example) to form a metal-carbene complex (see Scheme 5.2-2, route a)). Xiao and co-workers demonstrated that a Pd imida-zolylidene complex was formed when Pd(OAc)2 was heated in the presence of [BMIMjBr [30]. The isolated Pd carbene complex was found to be active and stable in Heck coupling reactions (for more details see Section 5.2.4.4). Welton et al. were later able to characterize an isolated Pd-carbene complex obtained in this way by X-ray spectroscopy [31]. The reaction pathway to the complex is displayed in Scheme 5.2-3. [Pg.223]

However, formation of the metal carbene complex was not observed in pure, halide-free [BMIM][Bp4], indicating that the formation of carbene depends on the... [Pg.223]

Another means of in situ metal-carbene complex formation in an ionic liquid is the direct oxidative addition of the imidazolium cation to a metal center in a low oxidation state (see Scheme 5.2-2, route b)). Cavell and co-workers have observed oxidative addition on heating 1,3-dimethylimidazolium tetrafluoroborate with Pt(PPli3)4 in refluxing THF [32]. The Pt-carbene complex formed can decompose by reductive elimination. Winterton et al. have also described the formation of a Pt-car-bene complex by oxidative addition of the [EMIM] cation to PtCl2 in a basic [EMIM]C1/A1C13 system (free CP ions present) under ethylene pressure [33]. The formation of a Pt-carbene complex by oxidative addition of the imidazolium cation is displayed in Scheme 5.2-4. [Pg.224]

In the light of these results, it becomes important to question whether a particular catalytic result obtained in a transition metal-catalyzed reaction in an imidazolium ionic liquid is caused by a metal carbene complex formed in situ. The following simple experiments can help to verify this in more detail a) variation of ligands in the catalytic system, b) application of independently prepared, defined metal carbene complexes, and c) investigation of the reaction in pyridinium-based ionic liquids. If the reaction shows significant sensitivity to the use of different ligands, if the application of the independently prepared, defined metal-carbene complex... [Pg.224]

The ease of formation of the carbene depends on the nucleophilicity of the anion associated with the imidazolium. For example, when Pd(OAc)2 is heated in the presence of [BMIM][Br], the formation of a mixture of Pd imidazolylidene complexes occurs. Palladium complexes have been shown to be active and stable catalysts for Heck and other C-C coupling reactions [34]. The highest activity and stability of palladium is observed in the ionic liquid [BMIM][Brj. Carbene complexes can be formed not only by deprotonation of the imidazolium cation but also by direct oxidative addition to metal(O) (Scheme 5.3-3). These heterocyclic carbene ligands can be functionalized with polar groups in order to increase their affinity for ionic liquids. While their donor properties can be compared to those of donor phosphines, they have the advantage over phosphines of being stable toward oxidation. [Pg.269]

With the enthusiasm currently being generated by the (so-called) stable carbenes (imidazolylidenes) [7], it is surprising that there are few reports of imidazolium-based ionic liquids being used to prepare metal imidazolylidene complexes. Xiao et al. have prepared bis(imida2olylidene)palladium(II) dibromide in [BMIMJBr [8]. All four possible conformers are formed, as shown in Scheme 6.1-3. [Pg.290]

Acyclic diene molecules are capable of undergoing intramolecular and intermolec-ular reactions in the presence of certain transition metal catalysts molybdenum alkylidene and ruthenium carbene complexes, for example [50, 51]. The intramolecular reaction, called ring-closing olefin metathesis (RCM), affords cyclic compounds, while the intermolecular reaction, called acyclic diene metathesis (ADMET) polymerization, provides oligomers and polymers. Alteration of the dilution of the reaction mixture can to some extent control the intrinsic competition between RCM and ADMET. [Pg.328]

The 13C-NMR spectra of 4-7, 9-11 show a close similarity to the spectral data of analogous carbene complexes. The shift differences between the metal carbonyls of the silylene complexes and the related carbon compounds are only small. These results underline the close analogy between the silicon compounds 4-7, 9-11 and Fischer carbene complexes. This view is also supported by the IR spectral data. On the basis of an analysis of the force constants of the vco stretching vibration,... [Pg.18]

The surprising stability of N-heterocyclic carbenes was of interest to organometallic chemists who started to explore the metal complexes of these new ligands. The first examples of this class had been synthesized as early as 1968 by Wanzlick [9] and Ofele [10], only 4 years after the first Fischer-type carbene complex was synthesized [2,3] and 6 years before the first report of a Schrock-type carbene complex [11]. Once the N-heterocyclic ligands are attached to a metal they show a completely different reaction pattern compared to the electrophilic Fischer- and nucleophilic Schrock-type carbene complexes. [Pg.2]

During the last decade N-heterocyclic carbene complexes of transition metals have been developed for catalytic applications for many different or-... [Pg.3]

Schrock-type carbenes are nucleophilic alkylidene complexes formed by coordination of strong donor ligands such as alkyl or cyclopentadienyl with no 7T-acceptor ligand to metals in high oxidation states. The nucleophilic carbene complexes show Wittig s ylide-type reactivity and it has been discussed whether the structures may be considered as ylides. A tantalum Schrock-type carbene complex was synthesized by deprotonation of a metal alkyl group [38] (Scheme 7). [Pg.5]

These carbene (or alkylidene) complexes are used for various transformations. Known reactions of these complexes are (a) alkene metathesis, (b) alkene cyclopropanation, (c) carbonyl alkenation, (d) insertion into C-H, N-H and O-H bonds, (e) ylide formation and (f) dimerization. The reactivity of these complexes can be tuned by varying the metal, oxidation state or ligands. Nowadays carbene complexes with cumulated double bonds have also been synthesized and investigated [45-49] as well as carbene cluster compounds, which will not be discussed here [50]. [Pg.6]

Fischer-type carbene complexes, generally characterized by the formula (CO)5M=C(X)R (M=Cr, Mo, W X=7r-donor substitutent, R=alkyl, aryl or unsaturated alkenyl and alkynyl), have been known now for about 40 years. They have been widely used in synthetic reactions [37,51-58] and show a very good reactivity especially in cycloaddition reactions [59-64]. As described above, Fischer-type carbene complexes are characterized by a formal metal-carbon double bond to a low-valent transition metal which is usually stabilized by 7r-acceptor substituents such as CO, PPh3 or Cp. The electronic structure of the metal-carbene bond is of great interest because it determines the reactivity of the complex [65-68]. Several theoretical studies have addressed this problem by means of semiempirical [69-73], Hartree-Fock (HF) [74-79] and post-HF [80-83] calculations and lately also by density functional theory (DFT) calculations [67, 84-94]. Often these studies also compared Fischer-type and... [Pg.6]

A decade after Fischer s synthesis of [(CO)5W=C(CH3)(OCH3)] the first example of another class of transition metal carbene complexes was introduced by Schrock, which subsequently have been named after him. His synthesis of [((CH3)3CCH2)3Ta=CHC(CH3)3] [11] was described above and unlike the Fischer-type carbenes it did not have a stabilizing substituent at the carbene ligand, which leads to a completely different behaviour of these complexes compared to the Fischer-type complexes. While the reactions of Fischer-type carbenes can be described as electrophilic, Schrock-type carbene complexes (or transition metal alkylidenes) show nucleophilicity. Also the oxidation state of the metal is generally different, as Schrock-type carbene complexes usually consist of a transition metal in a high oxidation state. [Pg.9]

AT-heterocyclic carbenes show a pure donor nature. Comparing them to other monodentate ligands such as phosphines and amines on several metal-carbonyl complexes showed the significantly increased donor capacity relative to phosphines, even to trialkylphosphines, while the 7r-acceptor capability of the NHCs is in the order of those of nitriles and pyridine [29]. This was used to synthesize the metathesis catalysts discussed in the next section. Experimental evidence comes from the fact that it has been shown for several metals that an exchange of phosphines versus NHCs proceeds rapidly and without the need of an excess quantity of the NHC. X-ray structures of the NHC complexes show exceptionally long metal-carbon bonds indicating a different type of bond compared to the Schrock-type carbene double bond. As a result, the reactivity of these NHC complexes is also unique. They are relatively resistant towards an attack by nucleophiles and electrophiles at the divalent carbon atom. [Pg.12]

The 1,3-dipolar cycloadditions are a powerful kind of reaction for the preparation of functionalised five-membered heterocycles [42]. In the field of Fischer carbene complexes, the a,/ -unsaturated derivatives have been scarcely used in cyclo additions with 1,3-dipoles in contrast with other types of cyclo additions [43]. These complexes have low energy LUMOs, due to the electron-acceptor character of the pentacarbonyl metal fragment, and hence, they react with electron-rich dipoles with high energy HOMOs. [Pg.71]

The reaction of alkoxyarylcarbene complexes with alkynes mainly affords Dotz benzannulated [3C+2S+1C0] cycloadducts. However, uncommon reaction pathways of some alkoxyarylcarbene complexes in their reaction with alkynes leading to indene derivatives in a formal [3C+2S] cycloaddition process have been reported. For example, the reaction of methoxy(2,6-dimethylphenyl)chromium carbene complex with 1,2-diphenylacetylene at 100 °C gives rise to an unusual indene derivative where a sigmatropic 1,5-methyl shift is observed [60]. Moreover, a related (4-hydroxy-2,6-dimethylphenyl)carbene complex reacts in benzene at 100 °C with 3-hexyne to produce an indene derivative. However, the expected Dotz cycloadduct is obtained when the solvent is changed to acetonitrile [61] (Scheme 19). Also, Dotz et al. have shown that the introduction of an isocyanide ligand into the coordination sphere of the metal induces the preferential formation of indene derivatives [62]. [Pg.75]

The participation of carbene/carbenoid metal complexes in [4S+1C] cycloaddition reactions is very infrequent [81]. In fact, only a few examples involving Fischer carbene complexes have been reported in recent years [82]. A remark-... [Pg.84]

Despite the fact that transition metal complexes have found wide application in the synthesis of carbo- and heterocycles, [3+3] cyclisation reactions mediated or assisted by transition metals remain almost unexplored [3, 86]. However, a few examples involving Fischer carbene complexes have been reported. In all cases, this complex is a,/J-unsaturated in order to act as a C3-synthon and it reacts with different types of substrates acting as C3-synthons as well. [Pg.88]

The potential of Fischer carbene complexes in the construction of complex structures from simple starting materials is nicely reflected in the next example. Thus, the reaction of alkenylcarbene complexes of chromium and tungsten with cyclopentanone and cyclohexanone enamines allows the di-astereo- and enantioselective synthesis of functionalised bicyclo[3.2.1]octane and bicyclo[3.3.1]nonane derivatives [12] (Scheme 44). The mechanism of this transformation is initiated by a 1,4-addition of the C -enamine to the alkenylcarbene complex. Further 1,2-addition of the of the newly formed enamine to the carbene carbon leads to a metalate intermediate which can... [Pg.90]

Electronically rich 1,3-butadienes such as Danishefsky s diene react with chromium alkenylcarbene complexes affording seven-membered rings in a formal [4S+3C] cycloaddition process [73a, 95a]. It is important to remark on the role played by the metal in this reaction as the analogous tungsten carbene complexes lead to [4S+2C] cycloadducts (see Sect. 2.9.1.1). Formation of the seven-membered ring is explained by an initial cyclopropanation of the most electron-rich double bond of the diene followed by a Cope rearrangement of the formed divinylcyclopropane (Scheme 65). Amino-substituted 1,3-butadienes also react with chromium alkenylcarbene complexes to produce the corre-... [Pg.102]

Seven-membered carbocycles are also available from the reaction of alkenylcarbene complexes of chromium and lithium enolates derived from methyl vinyl ketones [79b] (Scheme 65). In this case, the reaction is initiated by the 1,2-addition of the enolate to the carbene complex. Cyclisation induced by a [1,2]-migration of the pentacarbonylchromium group and subsequent elimination of the metal fragment followed by hydrolysis leads to the final cyclo-heptenone derivatives (Scheme 65). [Pg.103]


See other pages where Carbenes metal carbene complex is mentioned: [Pg.103]    [Pg.291]    [Pg.687]    [Pg.170]    [Pg.124]    [Pg.11]    [Pg.13]    [Pg.14]    [Pg.223]    [Pg.224]    [Pg.225]    [Pg.4]    [Pg.7]    [Pg.8]    [Pg.9]    [Pg.10]    [Pg.10]    [Pg.11]    [Pg.13]    [Pg.22]    [Pg.24]    [Pg.61]    [Pg.61]    [Pg.63]    [Pg.70]    [Pg.105]    [Pg.111]   
See also in sourсe #XX -- [ Pg.333 ]




SEARCH



Acyclic carbene-metal complexes

Alkali metal complexes with carbenes

Alkaline-earth metals, carbene complexes

Alkene metathesis metal carbene complexes

Alkenes via metal carbene complexes

Alkenyl halides via metal carbene complexes

Alkyne insertion metal carbene complexes

Amino carbene metal complexes

An Extension Metal Complexes with Unsaturated Carbenes

Carbene alkali metal complexes

Carbene complexes carbon-metal bond

Carbene complexes metal carbonyls

Carbene) Complexes of Transition Metals

Carbene-olefin metal complex

Carbenes alkali metal complexes

Carbenes alkaline earth metal complexes

Carbenes metal complexes

Carbenes metal complexes

Carbenes transition metal complexes

Carbenes transition metal complexes, catalytic

Carbenes, alkynyltransition metal complexes

Carbenes, alkynyltransition metal complexes 2 + 2] cycloaddition reactions

Carbenes, alkynyltransition metal complexes cycloaddition reactions with 1,3-dienes

Carbenes, alkynyltransition metal complexes ene reactions

Carbenes, complexes with transition metals

Carbenes, complexes with transition metals electronic structure

Carbenes, complexes with transition metals rearrangement

Carbenes, generation metal complexes

Carbonyl Olefination Utilizing Metal Carbene Complexes

Chemistry of Transition Metal Carbene Complexes

Classification of transition metal-carbene complexes

Complexes metal carbene

Complexes metal carbene

Complexes metal-carbene, protonated

Cyclization reactions carbene transition metal complexes

Cycloaddition reactions carbene transition metal complexes

Detection of propagating metal-carbene complexes

Early Transition and Rare Earth Metal Complexes with N-Heterocyclic Carbenes

Fischer-type carbenes transition metal complexes

From metal carbene complexes

Hydrosilylation metal-carbene complexes

Initiation efficiency metal carbene complexes

Ketene chemistry metal carbene complexes

Kinetics metal carbene complexes

Lipotoxins via metal carbene complexes

Metal carbene complex propagation mechanism

Metal carbene complex reactivity

Metal carbene complexes 18-electron

Metal carbene complexes Fischer-type

Metal carbene complexes chiral

Metal carbene complexes detection

Metal carbene complexes electron-deficient

Metal carbene complexes enantioselectivity

Metal carbene complexes in olefin metathesis

Metal carbene complexes propagating

Metal carbene complexes rotational barriers about

Metal carbene complexes structure

Metal carbenes

Metal carbenes Fischer carbene complexes

Metal-Carbene, -Methylene, -Carbyne and -Methylidyne Complexes

Metal-carbene complexes Bonding

Metal-carbene complexes Classification

Metal-carbene complexes Electrophilic

Metal-carbene complexes Fischer

Metal-carbene complexes Heterocyclics

Metal-carbene complexes NHCs)

Metal-carbene complexes Ruthenium

Metal-carbene complexes alkoxy substituted

Metal-carbene complexes amino substituted

Metal-carbene complexes anions

Metal-carbene complexes decomplexation

Metal-carbene complexes ligand substitution reactions

Metal-carbene complexes protecting group

Metal-carbene complexes reaction with alkenes

Metal-carbene complexes reaction with ylides

Metal-carbene complexes reactions with

Metal-carbene complexes spectra

Metal-carbene complexes synthesis

Metal-carbene complexes thermal decomposition

Metal-carbene-hydride complexes

Metal-carbene-olefin complexes decomposition

Metal-carbene-olefin complexes propagating, detection

Metal-ligand bonds carbene complexes

N-heterocyclic carbenes metal complexes

Nucleophilic metal-carbene complexes

Nucleophilic reactions Metal carbene complexes

Olefin metathesis using metal carbene complexes

Origins of Carbene-Metal Complexes

Reactions of Metal-Carbene Complexes

Reactivity of transition metal-carbene complexes

Schrock carbenes transition metal complex bonding

Schrock-type carbene complexes, transition metal

Silanes, alkenylsynthesis via metal carbene complexes

Sulfides, alkenyl via metal carbene complexes

Sulfur ylides, from metal carbene complexes

Synthesis of Carbene Ligands and Their Metal Complexes

Synthesis of Metal Carbene Complexes

Synthetic Reactions via Transition Metal Carbene Complexes

Transition Metal-Carbene Complexes in Olefin Metathesis and Related Reactions

Transition metal carbene complexes

Transition metal complexes carbene synthesis

Transition metal compounds chemical carbene complexes

Transition metal-carbene complexes, review

Tungsten complexes metal carbene catalysts

© 2024 chempedia.info