Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ylides carbene complexes

With ylides carbene complexes usually undergo Wittig alkenation whereby the (OC)5 W fragment can formally play the role of the oxygen atom of the aldehyde or ketone (equation 94).318... [Pg.1056]

Schrock-type carbenes are nucleophilic alkylidene complexes formed by coordination of strong donor ligands such as alkyl or cyclopentadienyl with no 7T-acceptor ligand to metals in high oxidation states. The nucleophilic carbene complexes show Wittig s ylide-type reactivity and it has been discussed whether the structures may be considered as ylides. A tantalum Schrock-type carbene complex was synthesized by deprotonation of a metal alkyl group [38] (Scheme 7). [Pg.5]

These carbene (or alkylidene) complexes are used for various transformations. Known reactions of these complexes are (a) alkene metathesis, (b) alkene cyclopropanation, (c) carbonyl alkenation, (d) insertion into C-H, N-H and O-H bonds, (e) ylide formation and (f) dimerization. The reactivity of these complexes can be tuned by varying the metal, oxidation state or ligands. Nowadays carbene complexes with cumulated double bonds have also been synthesized and investigated [45-49] as well as carbene cluster compounds, which will not be discussed here [50]. [Pg.6]

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

The diamagnetic ylide complexes 34 have been obtained from the reaction of electron-deficient complexes [MoH(SR)3(PMePh2)] and alkynes (HC=CTol for the scheme), via the formal insertion of the latter into the Mo-P bond. The structural data show that 34 corresponds to two different resonance-stabilized ylides forms 34a (a-vinyl form) and 34b (carbene ylide form) (Scheme 17) [73]. Concerning the group 7 recent examples of cis ylide rhenium complexes 36 cis-Me-Re-Me) have been reported from the reaction of the corresponding trans cationic alkyne derivatives 35 with PR" via a nucleophilic attack of this phosphine at the alkyne carbon. [Pg.54]

The q1-coordinated carbene complexes 421 (R = Ph)411 and 422412) are rather stable thermally. As metal-free product of thermal decomposition [421 (R = Ph) 110 °C, 422 PPh3, 105 °C], one finds the formal carbene dimer, tetraphenylethylene, in both cases. Carbene transfer from 422 onto 1,1-diphenylethylene does not occur, however. Among all isolated carbene complexes, 422 may be considered the only connecting link between stoichiometric diazoalkane reactions and catalytic decomposition [except for the somewhat different results with rhodium(III) porphyrins, see above] 422 is obtained from diazodiphenylmethane and [Rh(CO)2Cl]2, which is also known to be an efficient catalyst for cyclopropanation and S-ylide formation with diazoesters 66). [Pg.240]

Thiols like pyridine-2-thiol yield (carbene)gold thiolates, and onium salts give cationic (carbene)gold ylide complexes, isolated and characterized as the perchlorates.170 The reaction of dithiocatechol with (cyclohexylisocya-nide)gold chloride affords a carbene complex [(CyNC)AuC(NHCy)2]+Cl-, which co-crystallizes with a neutral tetranuclear complex [(CyNCAu)2Au2(S2C6H4)2].224... [Pg.287]

Metallic groups as in case (c) lead to electrophilic or even carbocation-like carbene complexes. Typical examples are Fischer-type carbene complexes [e.g. (CO)5Cr=C(Ph)OMe] and the highly reactive carbene complexes resulting from the reaction of rhodium(II) and palladium(II) carboxylates with diazoalkanes. Also platinum ylides [1,2], resulting from the reaction of diazoalkanes with platinum(Il) complexes, have a strong Pt-C o bond but only a weak Pt-C 7t bond. In situation (d) the interaction between the metal and the carbene is very weak, and highly reactive complexes showing carbene-like behavior result. Similar to uncomplexed carbenes. [Pg.2]

Several other observations suggest that nucleophilic carbene complexes, similarly to, e.g., sulfur ylides, can cyclopropanate acceptor-substituted olefins by an addition-elimination mechanism. If, e.g., acceptor-substituted olefins are added to a mixture of a simple alkene and the metathesis catalyst PhWCl3/AlCl3, the metathesis reaction is quenched and small amounts of acceptor-substituted cyclopropanes can be isolated [34]. [Pg.8]

Diaminocarbene complexes were reported as early as 1968 [152], Preparation and applications of such complexes have been reviewed [153], Because of 7t-electron donation by both nitrogen atoms, diaminocarbenes are very weak tt-acceptors and have binding properties towards low-valent transition metals similar to those of phosphines or pyridines [18,153]. For this reason diaminocarbenes form complexes with a broad range of different metals, including those of the titanium group. Titanium does not usually form stable donor-substituted carbene complexes, but rather ylide-like, nucleophilic carbene complexes with non-heteroatom-substituted carbenes (Chapter 3). [Pg.27]

Fig. 2.19. Typical reactions of Fischer-type carbene complexes with carbanions and ylides. Fig. 2.19. Typical reactions of Fischer-type carbene complexes with carbanions and ylides.
Several reaction sequences have been reported in which Fischer-type carbene complexes are converted in situ into non-heteroatom-substituted carbene complexes, which then cyclopropanate simple olefins [306,307] (Figure 2.22). This can, for instance, be achieved by treating the carbene complexes with dihydropyridines, forming (isolable) pyridinium ylides. These decompose thermally to yield pyridine and highly electrophilic, non-heteroatom-substituted carbene complexes (Figure 2.22) [46]. [Pg.45]

Photolysis or thermolysis of heteroatom-substituted chromium carbene complexes can lead to the formation of ketene-like intermediates (cf. Sections 2.2.3 and 2.2.5). The reaction of these intermediates with tertiary amines can yield ammonium ylides, which can undergo Stevens rearrangement [294,365,366] (see also Entry 6, Table 2.14 and Experimental Procedure 2.2.1). This reaction sequence has been used to prepare pyrrolidones and other nitrogen-containing heterocycles. Examples of such reactions are given in Figure 2.31 and Table 2.21. [Pg.64]

Non-heteroatom-substituted carbene complexes can also be generated by treatment of electrophilic transition metal complexes with ylides (e.g. diazoalkanes, phosphorus ylides, nucleophilic carbene complexes, etc. Section 3.1.3). Alkyl complexes with a leaving group in the a-position are formed as intermediates. These alkyl complexes can undergo spontaneous release of the leaving group to yield a carbene complex (Figure 3.2). [Pg.77]

Electrophilic transition metal complexes can react with organic ylides to yield alkylidene complexes. A possible mechanism would be the initial formation of alkyl complexes, which are converted into the final carbene complexes by electrophilic a-abstraction (Figure 3.18). This process is particularly important for the generation of acceptor-substituted carbene complexes (Section 4.1). [Pg.90]

Alkylidene complexes can be prepared by ligand displacement with phosphorus ylides [513,514] or nucleophilic tantalum carbene complexes [409,515]. This methodology has, however, not found widespread use. Representative examples are given in Figure 3.21. [Pg.93]

Some transition metal complexes readily react with ylides to yield electrophilic carbene complexes. If these complexes can transfer the carbene to a given substrate in such a way that the original transition metal complex is regenerated then this complex can be used as a catalyst for the transformation of the ylide (carbene precursor) into carbene-derived products (Figure 3.35). [Pg.114]

Fig. 3.35. Mechanism for the catalyzed cyclopropanation with ylides as carbene complex precursors. Fig. 3.35. Mechanism for the catalyzed cyclopropanation with ylides as carbene complex precursors.
Diazoalkanes are the carbene complex precursors most commonly used for the catalytic cyclopropanation of alkenes. Reactions involving this type of ylide will be discussed in this section. [Pg.114]

Interestingly, copper(I) salts also catalyze the cyclopropene-vinylcarbene isomerization [681]. In this case the transient carbene complexes again show electrophilic behavior, behavior similar to that of the complexes formed from copper(I) salts and diazoalkanes or sulfonium ylides. [Pg.119]

As discussed in previous sections, high-valent carbene complexes of early transition metals have ylide-like, nucleophilic character. Some Schrock-type carbene complexes react with carbonyl compounds in the same manner as do phosphorus ylides, namely by converting the carbonyl group into an alkene. [Pg.125]

It is particularly interesting, that some titanium and tantalum carbene complexes olefinate derivatives of carboxylic acids. These reagents are, moreover, much less basic than phosphorus ylides, and thus enable the olefination of strongly C-H acidic carbonyl compounds. [Pg.125]

The most important synthetic access to acceptor-substituted carbene complexes is the reaction of ylides with electrophilic, coordinatively unsaturated transition metal complexes (Figure 4.1 see also Section 3.1.3). [Pg.171]

Fig. 4.1. Generation of acceptor-substituted carbene complexes from ylides. X N2, SR2, S(0)Me2, Arl Z COR, CO2R, CONR2, SO2R, CN, P(0)(0R)2. Fig. 4.1. Generation of acceptor-substituted carbene complexes from ylides. X N2, SR2, S(0)Me2, Arl Z COR, CO2R, CONR2, SO2R, CN, P(0)(0R)2.
The most frequently used ylides for carbene-complex generation are acceptor-substituted diazomethanes. As already mentioned in Section 3.1.3.1, non-acceptor-substituted diazoalkanes are strong C-nucleophiles, easy to convert into carbene complexes with a broad variety of transition metal complexes. Acceptor-substituted diazomethanes are, however, less nucleophilic (and more stable) than non-acceptor-substituted diazoalkanes, and require catalysts of higher electrophilicity to be efficiently decomposed. Not surprisingly, the very stable bis-acceptor-substituted diazomethanes can be converted into carbene complexes only with strongly electrophilic catalysts. This order of reactivity towards electrophilic transition metal complexes correlates with the reactivity of diazoalkanes towards other electrophiles, such as Brpnsted acids or acyl halides. [Pg.172]

As shown in Figure 4.1, the initial step of the conversion of an ylide into a carbene complex is an electrophilic attack at the ylide. Reactions of this type will, therefore, occur more readily with increasing nucleophilicity of the ylide and increasing electrophilicity of the metal complex L M. Complexes which efficiently catalyze the decomposition of even weakly nucleophilic ylides can easily react with other nucleophiles also, such as amines or thiols. This has to be taken into account if reactions with substrates containing such strongly nucleophilic functional groups are to be performed. [Pg.175]

Ylides other than acceptor-substituted diazomethanes have only occasionally been used as carbene-complex precursors. lodonium ylides (PhI=CZ Z ) [1017,1050-1056], sulfonium ylides [673], sulfoxonium ylides [1057] and thiophenium ylides [1058,1059] react with electrophilic transition metal complexes to yield intermediates capable of undergoing C-H or N-H insertions and olefin cyclopropanations. [Pg.176]

The intramolecular addition of acylcarbene complexes to alkynes is a general method for the generation of electrophilic vinylcarbene complexes. These reactive intermediates can undergo inter- or intramolecular cyclopropanation reactions [1066 -1068], C-H bond insertions [1061,1068-1070], sulfonium and oxonium ylide formation [1071], carbonyl ylide formation [1067,1069,1071], carbene dimerization [1066], and other reactions characteristic of electrophilic carbene complexes. [Pg.177]

Acceptor-substituted carbene complexes are highly reactive intermediates, capable of transforming organic compounds in many different ways. Typical reactions include insertion into o-bonds, cyclopropanation, and ylide formation. Generally, acceptor-substituted carbene complexes are not isolated and used in stoichiometric amounts, but generated in situ from a carbene precursor and transition metal derivative. Usually only catalytic quantities of a transition metal complex are required for complete conversion of a carbene precursor via an intermediate carbene complex into the final product. [Pg.178]

Several examples have been reported for furanone formation by intramolecular C-H insertion of electrophilic carbene complexes [1006,1148] (Table 4.7). Yields can, however, be low with some substrates, possibly as a result of several potential side-reactions. Oxonium ylide formation and hydride abstraction, in particular, [1090,1149-1152] (see Section 4.2.9) seem to compete efficiently with the formation of some types of furanones. [Pg.187]

Electrophilic carbene complexes can react with amines, alcohols or thiols to yield the products of a formal X-H bond insertion (X N, O, S). Unlike the insertion of carbene complexes into aliphatic C-H bonds, insertion into X-H bonds can proceed via intermediate formation of ylides (Figure 4.7). [Pg.193]

Ylide formation, and hence X-H bond insertion, generally proceeds faster than C-H bond insertion or cyclopropanation [1176], 1,2-C-H insertion can, however, compete efficiently with X-H bond insertion [1177]. One problem occasionally encountered in transition metal-catalyzed X-H bond insertion is the deactivation of the (electrophilic) catalyst L M by the substrate RXH. The formation of the intermediate carbene complex requires nucleophilic addition of a carbene precursor (e.g. a diazocarbonyl compound) to the complex Lj,M. Other nucleophiles present in the reaction mixture can compete efficiently with the carbene precursor, or even lead to stable, catalytically inactive adducts L M-XR. For this reason carbene X-H bond insertion with substrates which might form a stable complex with the catalyst (e.g. amines, imidazole derivatives, thiols) often require larger amounts of catalyst and high reaction temperatures. [Pg.194]


See other pages where Ylides carbene complexes is mentioned: [Pg.266]    [Pg.266]    [Pg.687]    [Pg.73]    [Pg.73]    [Pg.109]    [Pg.196]    [Pg.229]    [Pg.262]    [Pg.276]    [Pg.277]    [Pg.345]    [Pg.429]    [Pg.3]    [Pg.9]    [Pg.38]    [Pg.90]    [Pg.172]    [Pg.178]   
See also in sourсe #XX -- [ Pg.240 ]




SEARCH



Carbene complexes ylide formation

Carbene-ylide

Metal-carbene complexes reaction with ylides

Phosphorus ylides carbene complexes

Sulfur ylides, from metal carbene complexes

Ylide complexes

© 2024 chempedia.info