Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal by solvent extraction

In spite of their toxicity, alkyl phosphites have been used extensively as lubricant additives, corrosion inhibitors, and antioxidants. In addition to their use as intermediates in synthesis, organophosphorus compounds are useful for separating heavy metals by solvent extraction. Several insecticides that were formerly in widespread use are derivatives of organic phosphates. Two such compounds are malathion and parathion. [Pg.512]

Among the most important indirect methods of analysis which employ redox reactions are the bromination procedures for the determination of aromatic amines, phenols, and other compounds which undergo stoichiometric bromine substitution or addition. Bromine may be liberated quantitatively by the acidification of a bromate-bromide solution mixed with the sample. The excess, unreacted bromine can then be determined by reaction with iodide ions to liberate iodine, followed by titration of the iodine with sodium thiosulphate. An interesting extension of the bromination method employs 8-hydroxyquinoline (oxine) to effect a separation of a metal by solvent extraction or precipitation. The metal-oxine complex can then be determined by bromine substitution. [Pg.205]

Separation of metals by solvent extraction is usually based on the various complexing properties of the metals (Chapter 3). Separation systems may be chosen on the basis of complexity constants obtained from the literature. However, the literature often shows different values for same systems causing considerable concern for process design chemists. There is an obvious need for an objective presentation of the uncertainty in the published equilibrium constants, however conditional they may be. [Pg.25]

The formation of a third phase during the extraction of a metal by solvent (extractant and diluent) cannot be tolerated in liquid-liquid extraction processes for obvious reasons. Elimination of a third phase is usually accomplished by the addition of a modifier to the solvent, or by increasing the temperature of the system. [Pg.293]

Multivalent metals can be separated from the alkali metals by solvent extraction or precipitation methods. Cation exchangers and electrolysis with a mercury cathode are useful in separating the metals of other groups from the alkali metals. [Pg.77]

The establishment of a nuclear power industry based on fission reactors involves the production of a number of materials that have only recently acquired commercial importance, notably uranium, thorium, zirconium, and heavy water, and on the operation of a number of novel chemical engineering processes, inciuding isotope separation, separation of metals by solvent extraction, and the separation and purification of intensely radioactive materials on a large scale. This text is concerned primarily with methods for producing the special materials used in nuclear fission reactors and with processes for separating isotopes and reclaiming radioactive fuel discharged from nuclear reactors. [Pg.1]

Figure 4.29. FIA manifold for the determination of trace metals by solvent extraction with dithizone in carbon tetrachloride. The aqueous sample S is injected into the aqueous carrier stream AQ, to which at (a) the organic phase ORG is continuously added and after passing through the extraction coil (b), made of Teflon tubing, the organic phase is again separated at point (c) and carried on through the flow cell for spectrophotometric measurement. Figure 4.29. FIA manifold for the determination of trace metals by solvent extraction with dithizone in carbon tetrachloride. The aqueous sample S is injected into the aqueous carrier stream AQ, to which at (a) the organic phase ORG is continuously added and after passing through the extraction coil (b), made of Teflon tubing, the organic phase is again separated at point (c) and carried on through the flow cell for spectrophotometric measurement.
Rimmer, B. F. 1989. Refining of platinum group metals by solvent extraction. In Precious metals 1989, ed. B. Harris, 217-226. AUentown, PA International Precious Metals Institute. [Pg.197]

Another line of analytical use is exemplified by the properties of l-(2-thiazolylazoi-2-naphthol (305), whose complexes with metals may be used for their spectrophotometric and titrimetric determination, as wel] as for their separation by solvent extraction (564, 568, 953-957, 1040). [Pg.154]

The purification of the galHum salt solutions is carried out by solvent extraction and/or by ion exchange. The most effective extractants are dialkyl-phosphates in sulfate medium and ethers, ketones (qv), alcohols, and trialkyl-phosphates in chloride medium. Electrorefining, ie, anodic dissolution and simultaneous cathodic deposition, is also used to purify metallic galHum. [Pg.160]

The production of CPO is based on relatively inexpensive cycHc substances these must be derivatized, however, to meet the requirements of resistance to heat softening and suitabiUty for metallization. Metathesis polymerization is problem-prone, since relatively large amounts of catalyst (WCl, C2H AlCl2) must be removed by solvent extraction (216). In the process, the price of CPO, at small batches, is several times higher than that of BPA-PC. [Pg.161]

The PGM concentrate is attacked with aqua regia to dissolve gold, platinum, and palladium. The more insoluble metals, iridium, rhodium, mthenium, and osmium remain as a residue. Gold is recovered from the aqua regia solution either by reduction to the metallic form with ferrous salts or by solvent-extraction methods. The solution is then treated with ammonium chloride to produce a precipitate of ammonium hexachloroplatinate(IV),... [Pg.168]

In practice, uranium ore concentrates are first purified by solvent extraction with tributyl phosphate in kerosene to give uranyl nitrate hexahydrate. The purified uranyl nitrate is then decomposed thermally to UO (eq. 10), which is reduced with H2 to UO2 (eq. 11), which in turn is converted to UF by high temperature hydrofluorination (eq. 12). The UF is then converted to uranium metal with Mg (eq. 19). [Pg.320]

These acids are less stable, less soluble and less acidic than the corresponding sulfonic acids. The common impurities are the respective sulfonyl chlorides from which they have been prepared, and the thiolsulfonates (neutral) and sulfonic acids into which they decompose. The first two of these can be removed by solvent extraction from an alkaline solution of the acid. On acidification of an alkaline solution, the sulfinic acid crystallises out leaving the sulfonic acid behind. The lower molecular weight members are isolated as their metal (e.g. ferric) salts, but the higher members can be crystallised from water (made slightly acidic), or alcohol. [Pg.62]

Mineral Processing Slurry dilution Metal recovery by solvent extraction... [Pg.598]

The separation of basic precipitates of hydrous Th02 from the lanthanides in monazite sands has been outlined in Fig. 30.1 (p. 1230). These precipitates may then be dissolved in nitric acid and the thorium extracted into tributyl phosphate, (Bu"0)3PO, diluted with kerosene. In the case of Canadian production, the uranium ores are leached with sulfuric acid and the anionic sulfato complex of U preferentially absorbed onto an anion exchange resin. The Th is separated from Fe, A1 and other metals in the liquor by solvent extraction. [Pg.1255]

Theory. Conventional anion and cation exchange resins appear to be of limited use for concentrating trace metals from saline solutions such as sea water. The introduction of chelating resins, particularly those based on iminodiacetic acid, makes it possible to concentrate trace metals from brine solutions and separate them from the major components of the solution. Thus the elements cadmium, copper, cobalt, nickel and zinc are selectively retained by the resin Chelex-100 and can be recovered subsequently for determination by atomic absorption spectrophotometry.45 To enhance the sensitivity of the AAS procedure the eluate is evaporated to dryness and the residue dissolved in 90 per cent aqueous acetone. The use of the chelating resin offers the advantage over concentration by solvent extraction that, in principle, there is no limit to the volume of sample which can be used. [Pg.212]

The procedure followed entails the removal of gross interferences by solvent extraction, and the selective extraction and concentration of the trace metal by use of a chelating agent. The alloy used should not contain more than 0.1 g of copper in the sample weighed out. [Pg.808]

In almost all theoretical studies of AGf , it is postulated or tacitly understood that when an ion is transferred across the 0/W interface, it strips off solvated molecules completely, and hence the crystal ionic radius is usually employed for the calculation of AGfr°. Although Abraham and Liszi [17], in considering the transfer between mutually saturated solvents, were aware of the effects of hydration of ions in organic solvents in which water is quite soluble (e.g., 1-octanol, 1-pentanol, and methylisobutyl ketone), they concluded that in solvents such as NB andl,2-DCE, the solubility of water is rather small and most ions in the water-saturated solvent exist as unhydrated entities. However, even a water-immiscible organic solvent such as NB dissolves a considerable amount of water (e.g., ca. 170mM H2O in NB). In such a medium, hydrophilic ions such as Li, Na, Ca, Ba, CH, and Br are selectively solvated by water. This phenomenon has become apparent since at least 1968 by solvent extraction studies with the Karl-Fischer method [35 5]. Rais et al. [35] and Iwachido and coworkers [36-39] determined hydration numbers, i.e., the number of coextracted water molecules, for alkali and alkaline earth metal... [Pg.49]

T. K. Mukherjee and C. K. Gupta, Flowsheets Development for Recovery of Nonferrous Metal values from Secondary Resources by Solvent Extraction, Proceed, of a Symposium - Emerging Separation Technologies for Metals II Sponsored by the Engineers Foundation Conference and the National Science Foundation held at Kona, Hawaii, June 16-21,1996. [Pg.578]

Columbium (also known as niobium) and tantalum metals are produced from purified salts, which are prepared from ore concentrates and slags resulting from foreign tin production. The concentrates and slags are leached with hydrofluoric acid to dissolve the metal salts. Solvent extraction or ion exchange is used to purify the columbium and tantalum. The salts of these metals are then reduced by means of one of several techniques, including aluminothermic reduction, sodium reduction, carbon reduction, and electrolysis.19-21 Owing to the reactivity of these metals, special techniques are used to purify and work the metal produced. [Pg.95]

Zhao, J. Wu, Z. C. Chen, J. Y. Separation of gold from other metals in thiosulfate solutions by solvent extraction. [Pg.807]

Orren [663] used atomic absorption spectrometry to determine these elements in seawater in both their soluble and insoluble forms. The alkali metals are determined directly, but the other elements are first concentrated by solvent extraction. The particulate matter content is derived by dissolving the membranes used to filter the sample and determine the metals in the resulting solution. For organic standards of known metal content, the efficiency of the technique was almost 100%. [Pg.240]

There have also been several papers [61-63] on the importance of carefully establishing the reaction mechanism when attempting the copolymerization of olefins with polar monomers since many transition metal complexes can spawn active free radical species, especially in the presence of traces of moisture. The minimum controls that need to be carried out are to run the copolymerization in the presence of various radical traps (but this is not always sufficient) to attempt to exclude free radical pathways, and secondly to apply solvent extraction techniques to the polymer formed to determine if it is truly a copolymer or a blend of different polymers and copolymers. Indeed, even in the Drent paper [48], buried in the supplementary material, is described how the true transition metal-catalyzed random copolymer had to be freed of acrylate homopolymer (free radical-derived) by solvent extraction prior to analysis. [Pg.176]

Demex [Demetallization by extraction] A process for removing metal compounds from heavy petroleum fractions, after vacuum distillation, by solvent extraction and supercritical solvent recovery. The solvent is typically a mixture of octanes and pentanes. Developed jointly by UOP and the Institute Mexicano del Petroleo seven units were operating in 1988. Hydrocarbon Process., 1988, 67(9), 66. [Pg.83]


See other pages where Metal by solvent extraction is mentioned: [Pg.278]    [Pg.196]    [Pg.278]    [Pg.196]    [Pg.331]    [Pg.413]    [Pg.155]    [Pg.381]    [Pg.158]    [Pg.174]    [Pg.23]    [Pg.565]    [Pg.279]    [Pg.450]    [Pg.165]    [Pg.55]    [Pg.1255]    [Pg.417]    [Pg.362]    [Pg.487]    [Pg.555]    [Pg.83]    [Pg.781]    [Pg.807]    [Pg.15]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



By extractions

By solvent

Metals extraction

© 2024 chempedia.info