Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal as acids

Metal salts in acid solution Most metals as acid salts, e.g. chloride nitrate sulphate... [Pg.506]

The reductive decomposition of thiocyanato complexes should be applicable to the electrodeposition of other metal sulfides. We have tried this with Pd2, Co2+, Ni2+, Zn2+ and In3+.I8 While thin films of PdS, CoS and NiS could be successfully electrodeposited, other metal sulfides such as ZnS and In2S3 could not be obtained. This is an interesting series of results when we think of the softness (hardness) of these metals as acid. TC coordinates with its sof basic S atom to soft acidic Cd2+ and Pd2+, while hard acidic In3+ only permits coordination with hard basic N atom to form an isothiocyanato-complex. Other metals are at the borderline accepting coordination of both S and N. Because reduction of TC is catalyzed by a central metal,75,76) such ligand reduction may result in the formation of metal sulfides only for thiocyanato-complexes. The difference in bahavior among Co2+, Ni2+ and Zn2+ could be reasoned as the consequence of efficient catalysis of the electron transfer reaction by the transition metals. Such trends fit nicely with the previous findings by electrochemical analyses. 7) It is therefore understood that the chemical structure of the active species is decisive to the film formation. Thus, designing such molecular precursors which are chemically stable but can be electrochemically decomposed to metal sulfides should broaden the possibilities of electrochemical thin film synthesis. [Pg.57]

Like acids, bases are corrosive. Bases can cause burns and damage tissue. You should never touch or taste a substance to find out whether it is a base. Basic solutions contain ions and can conduct electricity. Basic solutions are not as reactive with metals as acidic solutions are. [Pg.81]

By analogy, ammonium salts should behave as acids in liquid ammonia, since they produce the cation NH4 (the solvo-cation ), and soluble inorganic amides (for example KNHj, ionic) should act as bases. This idea is borne out by experiment ammonium salts in liquid ammonia react with certain metals and hydrogen is given off. The neutralisation of an ionic amide solution by a solution of an ammonium salt in liquid ammonia can be carried out and followed by an indicator or by the change in the potential of an electrode, just like the reaction of sodium hydroxide with hydrochloric acid in water. The only notable difference is that the salt formed in liquid ammonia is usually insoluble and therefore precipitates. [Pg.90]

Analytical Procedures. Standard methods for analysis of food-grade adipic acid are described ia the Food Chemicals Codex (see Refs, ia Table 8). Classical methods are used for assay (titration), trace metals (As, heavy metals as Pb), and total ash. Water is determined by Kad-Fisher titration of a methanol solution of the acid. Determination of color ia methanol solution (APHA, Hazen equivalent, max. 10), as well as iron and other metals, are also described elsewhere (175). Other analyses frequendy are required for resia-grade acid. For example, hydrolyzable nitrogen (NH, amides, nitriles, etc) is determined by distillation of ammonia from an alkaline solution. Reducible nitrogen (nitrates and nitroorganics) may then be determined by adding DeVarda s alloy and continuing the distillation. Hydrocarbon oil contaminants may be determined by ir analysis of halocarbon extracts of alkaline solutions of the acid. [Pg.246]

Anhydrous, monomeric formaldehyde is not available commercially. The pure, dry gas is relatively stable at 80—100°C but slowly polymerizes at lower temperatures. Traces of polar impurities such as acids, alkahes, and water greatly accelerate the polymerization. When Hquid formaldehyde is warmed to room temperature in a sealed ampul, it polymerizes rapidly with evolution of heat (63 kj /mol or 15.05 kcal/mol). Uncatalyzed decomposition is very slow below 300°C extrapolation of kinetic data (32) to 400°C indicates that the rate of decomposition is ca 0.44%/min at 101 kPa (1 atm). The main products ate CO and H2. Metals such as platinum (33), copper (34), and chromia and alumina (35) also catalyze the formation of methanol, methyl formate, formic acid, carbon dioxide, and methane. Trace levels of formaldehyde found in urban atmospheres are readily photo-oxidized to carbon dioxide the half-life ranges from 35—50 minutes (36). [Pg.491]

Hydrazinium salts, N2H5 X, are acids in anhydrous hydrazine, metallic hydrazides, N2H, are bases. Neutralization in this solvent system involves the hydrazinium and hydrazide ions and is the reverse of equation 7. Metal hydrazides, formally analogous to the metal amides, are prepared from anhydrous hydrazine and the metals as well as from metal amides, alkyls, or hydrides. (The term hydrazide is also used for organic compounds where the carboxyUc acid OH is substituted with a N2H2.) Sodium hydrazide [13598-47-5] is made from sodium or, more safely, from sodium amide (14) ... [Pg.275]

Chromium (ITT) can be analy2ed to a lower limit of 5 x 10 ° M by luminol—hydrogen peroxide without separating from other metals. Ethylenediaminetetraacetic acid (EDTA) is added to deactivate most interferences. Chromium (ITT) itself is deactivated slowly by complexation with EDTA measurement of the sample after Cr(III) deactivation is complete provides a blank which can be subtracted to eliminate interference from such ions as iron(II), inon(III), and cobalt(II), which are not sufficiently deactivated by EDTA (275). [Pg.274]

Technical-Grade Terephthalic Acid. All technical-grade terephthahc acid is produced by catalytic, hquid-phase air oxidation of xylene. Several processes have been developed, but they all use acetic acid as a solvent and a multivalent heavy metal or metals as catalysts. Cobalt is always used. In the most popular process, cobalt and manganese are the multivalent heavy-metal catalysts and bromine is the renewable source for free radicals (51,52). [Pg.487]

Amine Cross-Linking. Two commercially important, high performance elastomers which are not normally sulfur-cured are the fluoroelastomers (FKM) and the polyacrylates (ACM). Polyacrylates typically contain a small percent of a reactive monomer designed to react with amine curatives such as hexamethylene-diamine carbamate (Diak 1). Because the type and level of reactive monomer varies with ACM type, it is important to match the curative type to the particular ACM ia questioa. Sulfur and sulfur-beating materials can be used as cure retarders they also serve as age resistors (22). Fluoroelastomer cure systems typically utilize amines as the primary cross-linking agent and metal oxides as acid acceptors. [Pg.236]

Chemical analysis methods maybe used for assay of silver alloys containing no interfering base metals. Nitric acid dissolution of the silver and precipitation as AgCl, or the Gay-Lussac-VoUiard titration methods are used iaterchangeably for the higher concentrations of silver. These procedures have been described (4). [Pg.85]

In this method, a metal oxide or hydroxide is slurried in an organic solvent, neodecanoic acid is slowly added, and the mixture is refluxed to remove the water. Salts that are basic can be prepared by using less than stoichiometric amounts of acid. This method has been used in the preparation of metal salts of silver (80) and vanadium (81). The third method of preparation is similar to the fusion process, the difference is the use of finely divided metal as the starting material instead of the metal oxide or hydroxide. This method has been appHed to the preparation of cobalt neodecanoate (82). Salts of tin (83) and antimony (84) have been prepared by the fusion method, starting with lower carboxyHc acids, then replacing these acids with neodecanoic acid. [Pg.105]

Electrodeposition of Metals. Citric acid and its salts are used as sequestrants to control deposition rates in both electroplating and electroless plating of metals (153—171). The addition of citric acid to an electroless nickel plating bath results in a smooth, hard, nonporous metal finish. [Pg.186]

The tri- or tetraamine complex of copper(I), prepared by reduction of the copper(II) tetraamine complex with copper metal, is quite stable ia the absence of air. If the solution is acidified with a noncomplexiag acid, the formation of copper metal, and copper(II) ion, is immediate. If hydrochloric acid is used for the neutralization of the ammonia, the iasoluble cuprous chloride [7758-89-6], CuCl, is precipitated initially, followed by formation of the soluble ions [CuClj, [CuCl, and [CuCl as acid is iacreased ia the system. [Pg.253]

Metal soaps are composed of a metal and acid portion suppHed as solutions in solvent or oil. The general formula for a metal soap is (RCOO). In the case of neutral soaps, x equals the valence of the metal M. Acid soaps contain free acid (positive acid number) whereas neutral (normal) soaps contain no free acid (zero acid number) that is, the ratio of acid equivalents to metal equivalents is greater than one in the acid soap and equal to one in the neutral soap. Basic soap is characterized by a higher metal-to-acid equivalent ratio than the normal metal soap. Particular properties are obtained by adjusting the basicity. [Pg.217]

Copper and chromium are used for complexing a number of dyes such as the coppered direct and reactive dyes for cotton and metaUi2ed and neutral metal complex acid dyes for nylon, wool, etc. Examples are Direct Blue 218 [28407-37-6] (Cl 24401) (317), Reactive Violet 2 [8063-57-8] (Cl 18157) (318), and Acid Black 52 [5610-64-0] (Cl 15711) (319). [Pg.386]


See other pages where Metal as acids is mentioned: [Pg.40]    [Pg.49]    [Pg.719]    [Pg.207]    [Pg.241]    [Pg.349]    [Pg.197]    [Pg.235]    [Pg.241]    [Pg.62]    [Pg.62]    [Pg.87]    [Pg.551]    [Pg.139]    [Pg.222]    [Pg.226]    [Pg.226]    [Pg.330]    [Pg.257]    [Pg.231]    [Pg.291]    [Pg.415]    [Pg.562]    [Pg.222]    [Pg.511]    [Pg.2232]    [Pg.168]    [Pg.171]    [Pg.393]    [Pg.271]    [Pg.314]   
See also in sourсe #XX -- [ Pg.212 ]




SEARCH



A Possible Benchmark for Solid Metal Fluoride, Lewis Acids Aluminium Chlorofluoride

A-Amino acids metal complexes

Keto Acid Decarboxylations Not Involving a Metal Ion

Lewis Acidic Functions of Alkali Metal in Organometallic Reagents as Nucleophile

Metal Cations as Lewis Acids

Metal ions as Lewis acids

Metal-free reduction of imines enantioselective Br0nsted acid-catalyzed transfer hydrogenation using chiral BINOL-phosphates as catalysts

Nucleic acids metal complexes as probes

Predicting Whether a Metal Will Dissolve in Acid

The thermal decarboxylation of acids over a metal oxide catalyst

© 2024 chempedia.info