Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal analysis sample preservation

Common to nearly all analyses is preservation with refrigeration at 2-6°C, a practice, which minimizes the volatilization of organic compounds with low boiling points and the bacterial degradation of most organic compounds. That is why we must place samples on ice immediately after they have been collected, ship them in insulated coolers with ice, and keep them refrigerated until the time of analysis. Water samples collected for metal analysis and preserved with nitric acid are an exception to this rule as they may be stored at room temperature. The addition of methanol or sodium bisulfate solution to soil collected for VOC analysis is the only chemical preservation techniques ever applied to soil samples. [Pg.99]

Unfiltered and unpreserved groundwater water samples collected for total and dissolved metal analyses arrived to the laboratory in a cooler with ice three days after collection. On the fourth day after collection the laboratory filtered the samples for dissolved metal analysis and preserved all samples with nitric acid. The violation of the preservation requirements (no acid ice instead of ambient storage temperature) had a marginal effect on the concentrations of total metals as the addition of acid dissolved most of the metals that may have precipitated in the sample container. That is why the chemist accepts the total metal results, but qualifies them as estimated data. However, because improper preservation and storage have grossly compromised dissolved metal concentrations, the chemist rejects the dissolved metal results and requests that the water be resampled and reanalyzed. [Pg.273]

Preserve samples collected for metal analysis with 5 ml of 1 1 nitric acid solution. [Pg.100]

To collect a sample for dissolved metal analysis, stop the pump, and insert a filter cartridge into the line. Restart the pump, flush it with a small volume of groundwater, collect a sample into a preserved container. [Pg.149]

Once the sample preparation is complete, the analysis is carried out by an instrument of choice. A variety of instruments are used for different types of analysis, depending on the information to be acquired for example, chromatography for organic analysis, atomic spectroscopy for metal analysis, capillary electrophoresis for DNA sequencing, and electron microscopy for small structures. Common analytical instrumentation and the sample preparation associated with them are listed in Table 1.1. The sample preparation depends on the analytical techniques to be employed and their capabilities. For instance, only a few microliters can be injected into a gas chromatograph. So in the example of the analysis of pesticides in fish liver, the ultimate product is a solution of a few microliters that can be injected into a gas chromatograph. Sampling, sample preservation, and sample preparation are... [Pg.2]

EUTRON ACTIVATION ANALYSIS IS A VERY SENSITIVE TECHNIQUE for trace element determinations in various samples. If there are no elements that mutually interfere, the purely instrumental version of this method is often chosen for its established advantages such as accuracy, speed, sensitivity, simultaneous multielement determination, and sample preservation (1). For these reasons, instrumental neutron activation analysis (INAA) was applied to samples taken from a series of metal-working residues excavated at Tel Dan, Israel, from 1985 to 1986. [Pg.199]

Specifications could include required accuracy and precision, reagent purity, tolerances for apparatus, the use of standard reference materials, and acceptable values for blanks. Standard reference materials (see Box 3-1) contain certified levels of analyte in realistic materials that you might be analyzing, such as blood or coal or metal alloys. Your analytical method should produce an answer acceptably close to the certified level otherwise, there is something wrong with the accuracy of your method. Blanks account for interference by other species in the sample and for traces of analyte found in reagents used for sample preservation, preparation, and analysis. Frequent measurements of blanks detect whether analyte from previous samples is carried into subsequent analyses by adhering to vessels or instruments. [Pg.105]

Environmental water samples to be analyzed for metals are best stored in quartz or Teflon containers. However, because these containers are expensive, polypropylene containers are often used. Borosilicate glass may also be used, but soft glass should be avoided because it can leach traces of metals into the water. If silver is to be determined, the containers should be light absorbing (dark colored). Samples should be preserved by adding concentrated nitric acid so that the pH of the water is less than two. The iron in well water samples, for example, will precipitate as iron oxide upon exposure to air and would be lost to the analysis if not for this acidification. [Pg.22]

Environmental water samples to be analyzed for phosphate are not stored in plastic bottles unless kept frozen, because phosphates can be absorbed onto the walls of plastic bottles. Mercuric chloride, used as a preservative and acid (such as the nitric acid suggested for metals above), should not be used unless total phosphorus is determined. All containers used for water samples to be used for phosphate analysis should be acid rinsed, and commercial detergents containing phosphates should not be used to clean sample containers or laboratory glassware. [Pg.22]

Spike and bench-scale tests were performed in order to size the pilot test. For this purpose, soil samples of about 10kg each and groundwater samples (about 5kg each) were retrieved/collected both during and after the installation of the test wells in, respectively, sealed plastic bags and glass containers, and these were preserved under refrigeration. The samples were analysed for content of chlorinated solvents, sulphates, nitrates and metals (baseline analysis). [Pg.114]

Data from the Na-pyrophosphate partial extractions and estimates of organic C contained in humic and fulvic acids from spectroscopic determinations show poor reproducibility over time. Analysis of data from re-sampling in September 2007 show significantly lower results over bedrock mineralisation than the original orientation survey conducted in April 2007, although the general pattern appears to be preserved. Re-analysis of the duplicate field samples in the same batch indicates that this variation largely reflects seasonal variations in metal content of the soils, possibly related to rainfall patterns, but also includes a component of laboratory variation between batches. [Pg.5]

Soil samples for VOC analysis are collected into airtight coring devices or into preserved VOA vials. Soil samples for SVOC, metal, and inorganic parameter analyses are collected into brass or stainless steel core barrel liners, acrylic liners, or into glass jars with PTFE-lined lids. The liners are capped with PTFE sheets and plastic caps. [Pg.98]

Preservation of Water Samples for the Speciation Analysis of Metals. 22... [Pg.19]

PRESERVATION OF WATER SAMPLES FOR TH E SPECIATION ANALYSIS OF METALS... [Pg.22]

A wide range of chemical changes are possible. For inorganic samples, controlling the pH can be useful in preventing chemical reactions. For example, metal ions may oxidize to form insoluble oxides or hydroxides. The sample is often acidified with HNO3 to a pH below 2, as most nitrates are soluble, and excess nitrate prevents precipitation. Other ions, such as sulfides and cyanides, are also preserved by pH control. Samples collected for NH3 analysis are acidified with sulfuric acid to stabilize the NH3 as NH4SO4. [Pg.20]

An example of a method suitable for the determination of cadmium, cobalt, copper, iron, manganese, nickel, and zinc in water, using chelation and sample extraction, is as follows [113]. The sample is filtered through an acid-washed membrane filter as soon as possible after collection. It is then acidified with nitric acid for preservation until analysis. This will give the soluble metal fraction. If the total metal content is to be found, the sample is acidified and allowed to stand for 4 days with occasional shaking. Then it is filtered. [Pg.249]


See other pages where Metal analysis sample preservation is mentioned: [Pg.267]    [Pg.722]    [Pg.279]    [Pg.64]    [Pg.334]    [Pg.25]    [Pg.142]    [Pg.27]    [Pg.316]    [Pg.334]    [Pg.56]    [Pg.25]    [Pg.9]    [Pg.89]    [Pg.104]    [Pg.104]    [Pg.803]    [Pg.24]    [Pg.666]    [Pg.208]    [Pg.70]    [Pg.208]    [Pg.528]    [Pg.98]    [Pg.8]    [Pg.83]    [Pg.434]    [Pg.208]    [Pg.373]    [Pg.195]    [Pg.310]    [Pg.26]    [Pg.30]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Analysis metals

Metal Samples

Metals, preservation

Preserving samples

Sample metallization

© 2024 chempedia.info