Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercury interferences

Silver, copper, and mercury interfere with the reaction. Copper can be made inactive by the addition of some potassium cyanide. [Pg.214]

Mercury interferes with mitochondrial oxidation in the brain through mercaptide formation with thiol groups in pyruvate oxidase. Succinic dehydrogenase of the citric acid cycle is also inhibited. [Pg.70]

Toxic effects of phenylmercuric acetate are correlated with its rapid metabolic breakdown into the mercuric ion. Generally, mercury interferes with cellular enzymatic mechanisms by combining with sulfhydryl (-SH) groups of different enzymes and thereby produces nonspecific cell injury or death. [Pg.1986]

Mercury interferes with protein synthesis in the CNS. Blindness is associated with neuronal necrosis in the calcarine sulci of the visual cortex. [Pg.149]

Chemical Gas Detection. Spectral identification of gases in industrial processing and atmospheric contamination is becoming an important tool for process control and monitoring of air quaUty. The present optical method uses the ftir (Fourier transform infrared) interference spectrometer having high resolution (<1 cm ) capabiUty and excellent sensitivity (few ppb) with the use of cooled MCT (mercury—cadmium—teUuride) (2) detectors. [Pg.295]

The biochemical basis for the toxicity of mercury and mercury compounds results from its ability to form covalent bonds readily with sulfur. Prior to reaction with sulfur, however, the mercury must be metabolized to the divalent cation. When the sulfur is in the form of a sulfhydryl (— SH) group, divalent mercury replaces the hydrogen atom to form mercaptides, X—Hg— SR and Hg(SR)2, where X is an electronegative radical and R is protein (36). Sulfhydryl compounds are called mercaptans because of their ability to capture mercury. Even in low concentrations divalent mercury is capable of inactivating sulfhydryl enzymes and thus causes interference with cellular metaboHsm and function (31—34). Mercury also combines with other ligands of physiological importance such as phosphoryl, carboxyl, amide, and amine groups. It is unclear whether these latter interactions contribute to its toxicity (31,36). [Pg.109]

Concurrent with requirements for low levels of mercurials in discharge water is the problem of their deterrnination. The older methods of wet chemistry are inadequate, and total rehance is placed on instmmental methods. The most popular is atomic absorption spectrophotometry, which rehes on the absorption of light by mercury vapor (4). Solutions of mercury compounds not stabilized with an excess of acid tend to hydrolyze to form yeUow-to-orange basic hydrates. These frequendy absorb onto the walls of containers and may interfere with analytical results when low levels (ppm) of mercury are determined. [Pg.112]

Catalytic Oxidation. Catalytic oxidation is used only for gaseous streams because combustion reactions take place on the surface of the catalyst which otherwise would be covered by soHd material. Common catalysts are palladium [7440-05-3] and platinum [7440-06-4]. Because of the catalytic boost, operating temperatures and residence times are much lower which reduce operating costs. Catalysts in any treatment system are susceptible to poisoning (masking of or interference with the active sites). Catalysts can be poisoned or deactivated by sulfur, bismuth [7440-69-9] phosphoms [7723-14-0] arsenic, antimony, mercury, lead, zinc, tin [7440-31-5] or halogens (notably chlorine) platinum catalysts can tolerate sulfur compounds, but can be poisoned by chlorine. [Pg.168]

Mercury generally is found in low and trace concentrations. So there is need to determine Hg in ranges corresponding to various types of water samples. Detection levels of Hg can be improved by the use of vapour generation technique. This technique allows to sepai ate the analyte from the sample matrix and so to overcome the matrix interference. The fluorescence technique, with its high sensitivity and linearity, in combination with vapour generation, provides for a possibility to detect Hg in parts per trillion per liter regions. [Pg.211]

Discussion. Silver can be extracted from a nearly neutral aqueous solution into nitrobenzene as a blue ternary ion association complex formed between silver(I) ions, 1,10-phenanthroline and bromopyrogallol red. The method is highly selective in the presence of EDTA, bromide and mercury(II) ions as masking agents and only thiosulphate appears to interfere.8... [Pg.182]

Note. The presence of metals whose salts are colourless does not influence the accuracy of the determination, except that mercury and palladium must be absent since their thiocyanates are insoluble. Salts of metals (e.g. nickel and cobalt) which are coloured must not be present to any considerable extent. Copper does not interfere, provided it does not form more than about 40 per cent of the alloy. [Pg.354]

I. Sodium tetraphenylborate Na+ [B(C6H5)4] . This is a useful reagent for potassium the solubility product of the potassium salt is 2.25 x 10 8. Precipitation is usually effected at pH 2 or at pH 6.5 in the presence of EDTA. Rubidium and caesium interfere ammonium ion forms a slightly soluble salt and can be removed by ignition mercury(II) interferes in acid solution but does not do so at pH 6.5 in the presence of EDTA. [Pg.444]

Cations forming insoluble chromates, such as those of silver, barium, mercury (I), mercury(II), and bismuth, do not interfere because the acidity is sufficiently high to prevent their precipitation. Bromide ion from the generation may be expected to form insoluble silver bromide, and so it is preferable to separate silver prior to the precipitation. Ammonium salts interfere, owing to competitive oxidation by bromate, and should be removed by treatment with sodium hydroxide. [Pg.454]

Determination of copper as copper(I) thiocyanate Discussion. This is an excellent method, since most thiocyanates of other metals are soluble. Separation may thus be effected from bismuth, cadmium, arsenic, antimony, tin, iron, nickel, cobalt, manganese, and zinc. The addition of 2-3 g of tartaric acid is desirable for the prevention of hydrolysis when bismuth, antimony, or tin is present. Excessive amounts of ammonium salts or of the thiocyanate precipitant should be absent, as should also oxidising agents the solution should only be slightly acidic, since the solubility of the precipitate increases with decreasing pH. Lead, mercury, the precious metals, selenium, and tellurium interfere and contaminate the precipitate. [Pg.455]

Determination of mercury as mercury(II) thionalide Discussion. Thionalide C10H7 NH CO CH2 SH may be used for the quantitative precipitation of mercury(II) as Hg(C12H10ONS)2. Sulphate does not interfere. Attention is drawn to the following experimental points. [Pg.461]

Determination of silver as chloride Discussion. The theory of the process is given under Chloride (Section 11.57). Lead, copper(I), palladium)II), mercury)I), and thallium)I) ions interfere, as do cyanides and thiosulphates. If a mercury(I) [or copper(I) or thallium(I)] salt is present, it must be oxidised with concentrated nitric acid before the precipitation of silver this process also destroys cyanides and thiosulphates. If lead is present, the solution must be diluted so that it contains not more than 0.25 g of the substance in 200 mL, and the hydrochloric acid must be added very slowly. Compounds of bismuth and antimony that hydrolyse in the dilute acid medium used for the complete precipitation of silver must be absent. For possible errors in the weight of silver chloride due to the action of light, see Section 11.57. [Pg.467]

The solution should be free from the following, which either interfere or lead to an unsatisfactory deposit silver, mercury, bismuth, selenium, tellurium, arsenic, antimony, tin, molybdenum, gold and the platinum metals, thiocyanate, chloride, oxidising agents such as oxides of nitrogen, or excessive amounts of iron(III), nitrate or nitric acid. Chloride ion is avoided because Cu( I) is stabilised as a chloro-complex and remains in solution to be re-oxidised at the anode unless hydrazinium chloride is added as depolariser. [Pg.515]

Molybdenum(VI), vanadium(V), mercury, and iron interfere permanganates, if present, may be removed by boiling with a little ethanol. If the ratio of vanadium to chromium does not exceed 10 1, nearly correct results may be obtained by allowing the solution to stand for 10-15 minutes after the addition of the reagent, since the vanadium-diphenylcarbazide colour fades fairly rapidly. Vanadate can be separated from chromate by adding oxine to the solution and extracting at a pH of about 4 with chloroform chromate remains in the aqueous solution. Vanadium as well as iron can be precipitated in acid solution with cupferron and thus separated from chromium (III). [Pg.687]

Sulphuric acid is not recommended, because sulphate ions have a certain tendency to form complexes with iron(III) ions. Silver, copper, nickel, cobalt, titanium, uranium, molybdenum, mercury (>lgL-1), zinc, cadmium, and bismuth interfere. Mercury(I) and tin(II) salts, if present, should be converted into the mercury(II) and tin(IV) salts, otherwise the colour is destroyed. Phosphates, arsenates, fluorides, oxalates, and tartrates interfere, since they form fairly stable complexes with iron(III) ions the influence of phosphates and arsenates is reduced by the presence of a comparatively high concentration of acid. [Pg.690]

The amount of reddish-purple acid-chloranilate ion liberated is proportional to the chloride ion concentration. Methyl cellosolve (2-methoxyethanol) is added to lower the solubility of mercury(II) chloranilate and to suppress the dissociation of the mercury(II) chloride nitric acid is added (concentration 0.05M) to give the maximum absorption. Measurements are made at 530nm in the visible or 305 nm in the ultraviolet region. Bromide, iodide, iodate, thiocyanate, fluoride, and phosphate interfere, but sulphate, acetate, oxalate, and citrate have little effect at the 25 mg L 1 level. The limit of detection is 0.2 mg L 1 of chloride ion the upper limit is about 120 mg L . Most cations, but not ammonium ion, interfere and must be removed. [Pg.700]

Spectral interferences in AAS arise mainly from overlap between the frequencies of a selected resonance line with lines emitted by some other element this arises because in practice a chosen line has in fact a finite bandwidth . Since in fact the line width of an absorption line is about 0.005 nm, only a few cases of spectral overlap between the emitted lines of a hollow cathode lamp and the absorption lines of metal atoms in flames have been reported. Table 21.3 includes some typical examples of spectral interferences which have been observed.47-50 However, most of these data relate to relatively minor resonance lines and the only interferences which occur with preferred resonance lines are with copper where europium at a concentration of about 150mgL 1 would interfere, and mercury where concentrations of cobalt higher than 200 mg L 1 would cause interference. [Pg.792]

The major types of interferences in ASV procedures are overlapping stripping peaks caused by a similarity in the oxidation potentials (e.g., of the Pb, Tl, Cd, Sn or Bi, Cu, Sb groups), the presence of surface-active organic compounds that adsorb on tlie mercury electrode and inhibit the metal deposition, and the formation of intermetallic compounds (e.g., Cu-Zn) which affects the peak size and position. Knowledge of these interferences can allow prevention through adequate attention to key operations. [Pg.79]

Electrochemical analytical techniques are a class of titration methods which in turn can be subdivided into potentiometric titrations using ion-selective electrodes and polarographic methods. Polarographic methods are based on the suppression of the overpotential associated with oxygen or other species in the polarographic cell caused by surfactants or on the effect of surfactants on the capacitance of the electrode. One example of this latter case is the method based on the interference of anionic surfactants with cationic surfactants, or vice versa, on the capacitance of a mercury drop electrode. This interference can be used in the one-phase titration of sulfates without indicator to determine the endpoint... [Pg.281]

The low solubility of fullerene (Ceo) in common organic solvents such as THE, MeCN and DCM interferes with its functionalization, which is a key step for its synthetic applications. Solid state photochemistry is a powerful strategy for overcoming this difficulty. Thus a 1 1 mixture of Cgo and 9-methylanthra-cene (Equation 4.10, R = Me) exposed to a high-pressure mercury lamp gives the adduct 72 (R = Me) with 68% conversion [51]. No 9-methylanthracene dimers were detected. Anthracene does not react with Ceo under these conditions this has been correlated to its ionization potential which is lower than that of the 9-methyl derivative. This suggests that the Diels-Alder reaction proceeds via photo-induced electron transfer from 9-methylanthracene to the triplet excited state of Ceo-... [Pg.168]

UV irradiation of this bacterial cells using a broadband mercury-quartz lamp through an interference filter (bandwith 254 nm), provided preferential DNA damage with minimal effects on other subcellular structures. The exposure time ranged from 0 to 180 minutes in increments of 60 minutes, which gave total dose of UV exposure 1.21, 2.43 and 3.64 J/ m. ... [Pg.193]

In selecting reference electrodes for practical use, one should apply two criteria that of reducing the diffusion potentials and that of a lack of interference of RE components with the system being studied. Thus, mercury-containing REs (calomel or mercury-mercuric oxide) are inappropriate for measurements in conjunction with platinum electrodes, since the mercury ions readily poison platinum surfaces. Calomel REs are also inappropriate for systems sensitive to chloride ions. [Pg.195]


See other pages where Mercury interferences is mentioned: [Pg.93]    [Pg.624]    [Pg.174]    [Pg.172]    [Pg.93]    [Pg.624]    [Pg.174]    [Pg.172]    [Pg.428]    [Pg.521]    [Pg.203]    [Pg.168]    [Pg.2206]    [Pg.40]    [Pg.455]    [Pg.465]    [Pg.531]    [Pg.586]    [Pg.603]    [Pg.621]    [Pg.866]    [Pg.57]    [Pg.49]    [Pg.267]    [Pg.113]    [Pg.248]    [Pg.40]    [Pg.339]   
See also in sourсe #XX -- [ Pg.109 ]




SEARCH



© 2024 chempedia.info