Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanical properties viscoelastic

The radiation and temperature dependent mechanical properties of viscoelastic materials (modulus and loss) are of great interest throughout the plastics, polymer, and rubber from initial design to routine production. There are a number of laboratory research instruments are available to determine these properties. All these hardness tests conducted on polymeric materials involve the penetration of the sample under consideration by loaded spheres or other geometric shapes [1]. Most of these tests are to some extent arbitrary because the penetration of an indenter into viscoelastic material increases with time. For example, standard durometer test (the "Shore A") is widely used to measure the static "hardness" or resistance to indentation. However, it does not measure basic material properties, and its results depend on the specimen geometry (it is difficult to make available the identity of the initial position of the devices on cylinder or spherical surfaces while measuring) and test conditions, and some arbitrary time must be selected to compare different materials. [Pg.239]

Polymers have found widespread applications because of their mechanical behaviour. They combine the mechanical properties of elastic solids and viscous fluids. Therefore, they are regarded as viscoelastic materials. Viscoelastic... [Pg.2528]

Direct determination of relaxation time through viscoelastic studies (all mechanical properties involve this important parameter). [Pg.124]

Much more information can be obtained by examining the mechanical properties of a viscoelastic material over an extensive temperature range. A convenient nondestmctive method is the measurement of torsional modulus. A number of instmments are available (13—18). More details on use and interpretation of these measurements may be found in references 8 and 19—25. An increase in modulus value means an increase in polymer hardness or stiffness. The various regions of elastic behavior are shown in Figure 1. Curve A of Figure 1 is that of a soft polymer, curve B of a hard polymer. To a close approximation both are transpositions of each other on the temperature scale. A copolymer curve would fall between those of the homopolymers, with the displacement depending on the amount of hard monomer in the copolymer (26—28). [Pg.163]

The mechanical properties of LDPE fall somewhere between rigid polymers such as polystyrene and limp or soft polymers such as polyvinyls. LDPE exhibits good toughness and pHabiUty over a moderately wide temperature range. It is a viscoelastic material that displays non-Newtonian flow behavior, and the polymer is ductile at temperatures well below 0°C. Table 1 fists typical properties. [Pg.371]

Plasticizer Trimethylsilyl-endblocked- PDMS Adjustment of mechanical properties such as hardness, viscoelasticity, rheology. [Pg.701]

Strength and Stiffness. Thermoplastic materials are viscoelastic which means that their mechanical properties reflect the characteristics of both viscous liquids and elastic solids. Thus when a thermoplastic is stressed it responds by exhibiting viscous flow (which dissipates energy) and by elastic displacement (which stores energy). The properties of viscoelastic materials are time, temperature and strain rate dependent. Nevertheless the conventional stress-strain test is frequently used to describe the (short-term) mechanical properties of plastics. It must be remembered, however, that as described in detail in Chapter 2 the information obtained from such tests may only be used for an initial sorting of materials. It is not suitable, or intended, to provide design data which must usually be obtained from long term tests. [Pg.18]

Polymeric materials exhibit mechanical properties which come somewhere between these two ideal cases and hence they are termed viscoelastic. In a viscoelastic material the stress is a function of strain and time and so may be described by an equation of the form... [Pg.42]

In the preparation and processing of ionomers, plasticizers may be added to reduce viscosity at elevated temperatures and to permit easier processing. These plasticizers have an effect, as well, on the mechanical properties, both in the rubbery state and in the glassy state these effects depend on the composition of the ionomer, the polar or nonpolar nature of the plasticizer and on the concentration. Many studies have been carried out on plasticized ionomers and on the influence of plasticizer on viscoelastic and relaxation behavior and a review of this subject has been given 119]. However, there is still relatively little information on effects of plasticizer type and concentration on specific mechanical properties of ionomers in the glassy state or solid state. [Pg.150]

The mechanical properties of polymers are of interest in all applications where they are used as structural materials. The analysis of the mechanical behavior involves the deformation of a material under the influence of applied forces, and the most important and characteristic mechanical property is the modulus. A modulus is the ratio between the applied stress and the corresponding deformation, the nature of the modulus depending on that of the deformation. Polymers are viscoelastic materials and the high frequencies of most adiabatic techniques do not allow equilibrium to be reached in viscoelastic materials. Therefore, values of moduli obtained by different techniques do not always agree in the literature. [Pg.391]

Mechanical properties of plastics are invariably time-dependent. Rheology of plastics involves plastics in all possible states from the molten state to the glassy or crystalline state (Chapter 6). The rheology of solid plastics within a range of small strains, within the range of linear viscoelasticity, has shown that mechanical behavior has often been successfully related to molecular structure. Studies in this area can have two objectives (1) mechanical characterization of... [Pg.41]

Creep modeling A stress-strain diagram is a significant source of data for a material. In metals, for example, most of the needed data for mechanical property considerations are obtained from a stress-strain diagram. In plastic, however, the viscoelasticity causes an initial deformation at a specific load and temperature and is followed by a continuous increase in strain under identical test conditions until the product is either dimensionally out of tolerance or fails in rupture as a result of excessive deformation. This type of an occurrence can be explained with the aid of the Maxwell model shown in Fig. 2-24. [Pg.66]

Time dependence Viscoelastic deformation is a transition type behavior that is characterized by the occurrence of both elastic strain and time-dependent flow. It is the time dependence of the mechanical properties of plastics that makes the behavior of these materials difficult to analyze by mathematical theory. [Pg.113]

The time/temperature-dependent change in mechanical properties results from stress relaxation and other viscoelastic phenomena that are typical of these plastics. When the change is an unwanted limitation it is called creep. When the change is skillfully adapted to use in the overall design, it is referred to as plastic memory. [Pg.368]

Since these double-base proplnts consist essentially of a single phase which bears the total load in any application of force, their mechanical property behavior is significantly different from composite proplnts. In the latter formulations, the hydrocarbon binder comprises only about 14% of the composite structure, the remainder being solid particles. Under stress, the binder of these proplnts bears a proportionately higher load than that in the single phase double-base proplnts. At small strain levels, these proplnts behave in a linear viscoelastic manner where the solids reinforce the binder. As strain increases, the bond between the oxidizer and binder breaks down... [Pg.899]

There are two further related sets of tests that can be used to give information on the mechanical properties of viscoelastic polymers, namely creep and stress relaxation. In a creep test, a constant load is applied to the specimen and the elongation is measured as a function of time. In a stress relaxation test, the specimen is strained quickly to a fixed amount and the stress needed to maintain this strain is also measured as a function of time. [Pg.104]

Adsorption of rubber over the nanosilica particles alters the viscoelastic responses. Analysis of dynamic mechanical properties therefore provides a direct clue of the mbber-silica interaction. Figure 3.22 shows the variation in storage modulus (log scale) and tan 8 against temperature for ACM-silica, ENR-silica, and in situ acrylic copolymer and terpolymer-silica hybrid nanocomposites. [Pg.77]

Figures 4 and 5 give a broad indication of the relevant biomechanical properties of a number of flow sensitive biomaterials. In the case of the data shown in Fig. 5, the surface mechanical properties are lumped into a single measure of the surface integrity. Admittedly, in view of what has been said in the introduction about the viscoelastic nature of the wall material, the information given in Figs. 4 and 5 are oversimplistic. The data in Fig. 5 are based on reported critical minimum stresses (often expressed in terms of the mean bulk fluid stresses) at which physical damage is first observed. Figure 6 gives an indication of the... Figures 4 and 5 give a broad indication of the relevant biomechanical properties of a number of flow sensitive biomaterials. In the case of the data shown in Fig. 5, the surface mechanical properties are lumped into a single measure of the surface integrity. Admittedly, in view of what has been said in the introduction about the viscoelastic nature of the wall material, the information given in Figs. 4 and 5 are oversimplistic. The data in Fig. 5 are based on reported critical minimum stresses (often expressed in terms of the mean bulk fluid stresses) at which physical damage is first observed. Figure 6 gives an indication of the...
Anseth et al. [20] have reviewed the literature dealing with the mechanical properties of hydrogels and have considered in detail the effects of gel molecular structure, e.g., cross-linking, on bulk mechanical properties using theories of rubber elasticity and viscoelasticity. [Pg.556]

Contrary to the phase separation curve, the sol/gel transition is very sensitive to the temperature more cations are required to get a gel phase when the temperature increases and thus the extension of the gel phase decreases [8]. The sol/gel transition as determined above is well reproducible but overestimates the real amount of cation at the transition. Gelation is a transition from liquid to solid during which the polymeric systems suffers dramatic modifications on their macroscopic viscoelastic behavior. The whole phenomenon can be thus followed by the evolution of the mechanical properties through dynamic experiments. The behaviour of the complex shear modulus G (o)) reflects the distribution of the relaxation time of the growing clusters. At the gel point the broad distribution of... [Pg.41]


See other pages where Mechanical properties viscoelastic is mentioned: [Pg.373]    [Pg.3445]    [Pg.466]    [Pg.293]    [Pg.373]    [Pg.3445]    [Pg.466]    [Pg.293]    [Pg.243]    [Pg.65]    [Pg.292]    [Pg.153]    [Pg.166]    [Pg.50]    [Pg.253]    [Pg.86]    [Pg.345]    [Pg.350]    [Pg.3]    [Pg.199]    [Pg.213]    [Pg.41]    [Pg.139]    [Pg.715]    [Pg.835]    [Pg.44]    [Pg.107]    [Pg.115]    [Pg.196]    [Pg.204]    [Pg.554]    [Pg.603]    [Pg.877]    [Pg.158]    [Pg.216]   
See also in sourсe #XX -- [ Pg.144 , Pg.147 , Pg.153 , Pg.171 , Pg.228 , Pg.235 ]




SEARCH



Viscoelastic properties

Viscoelasticity properties

© 2024 chempedia.info