Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties mechanical behavior

The titanium-based composites with discontinuous reinforcement are attractive materials for a wide range of applications because of their high specific strength and stiffness and good fracture-related properties. Mechanical behavior of these materials depends strongly on both composition and microstructure of matrix and type, size and volume fraction of reinforcing phase. Hot plastic deformation is a powerful tool enhancing mechanical properties of titanium alloys. [Pg.253]

However, NbsSn has been found to be more favorable with respect to superconducting properties, mechanical behavior, and processing, which has precluded the use of VjSi as a magnet material (Smathers, 1990). [Pg.96]

Ceramics and composites for engine applications Design and life prediction methodologies Environmental effects on mechanical properties Mechanical behavior of porous ceramics Reliability of small scale systems Ultra high temperature ceramics Ternary compounds... [Pg.347]

No polymer is ever 100% crystalline at best, patches of crystallinity are present in an otherwise amorphous matrix. In some ways, the presence of these domains of crystallinity is equivalent to cross-links, since different chains loop in and out of the same crystal. Although there are similarities in the mechanical behavior of chemically cross-linked and partially crystalline polymers, a significant difference is that the former are irreversibly bonded while the latter are reversible through changes of temperature. Materials in which chemical cross-linking is responsible for the mechanical properties are called thermosetting those in which this kind of physical cross-linking operates, thermoplastic. [Pg.26]

In the last three chapters we have examined the mechanical properties of bulk polymers. Although the structure of individual molecules has not been our primary concern, we have sought to understand the influence of molecular properties on the mechanical behavior of polymeric materials. We have seen, for example, how the viscosity of a liquid polymer depends on the substituents along the chain backbone, how the elasticity depends on crosslinking, and how the crystallinity depends on the stereoregularity of the polymer. In the preceding chapters we took the existence of these polymers for granted and focused attention on their bulk behavior. In the next three chapters these priorities are reversed Our main concern is some of the reactions which produce polymers and the structures of the products formed. [Pg.264]

We noted above that the presence of monomer with a functionality greater than 2 results in branched polymer chains. This in turn produces a three-dimensional network of polymer under certain circumstances. The solubility and mechanical behavior of such materials depend critically on whether the extent of polymerization is above or below the threshold for the formation of this network. The threshold is described as the gel point, since the reaction mixture sets up or gels at this point. We have previously introduced the term thermosetting to describe these cross-linked polymeric materials. Because their mechanical properties are largely unaffected by temperature variations-in contrast to thermoplastic materials which become more fluid on heating-step-growth polymers that exceed the gel point are widely used as engineering materials. [Pg.314]

In Chap. 4 we discussed the crystallizability of polymers and the importance of this property on the mechanical behavior of the bulk sample. Following the logic that leads to Eq. (4.17), the presence of a comonomer lowers T for a polymer. Carrying this further, we can compare a copolymer to an alloy in which each component lowers the melting point of the other until a minimummelting eutectic is produced. Similar trends exist in copolymers. [Pg.469]

Young s modulus for [CERAMICS - MECHANICAL PROPERTIES AND BEHAVIOR] (Vol 5)... [Pg.692]

Mechanical Properties. The principal mechanical properties are Hsted in Table 1. The features of HDPE that have the strongest influence on its mechanical behavior are molecular weight, MWD, orientation, morphology, and the degree of branching, which determines resin crystallinity and density. [Pg.381]

The use of PC—ABS blends has grown significantly in the early 1990s. These blends exhibit excellent properties, particularly low temperature ductihty, reduced notch sensitivity, and ease of melt fabrication. The blend morphology (229), ABS composition, thermal history (215), PC content and molecular weight (300), processing conditions, etc, all affect the mechanical behavior of PC—ABS blends. These blends have been most frequently used in automotive and other engineering appHcations. [Pg.421]

Butadiene copolymers are mainly prepared to yield mbbers (see Styrene-butadiene rubber). Many commercially significant latex paints are based on styrene—butadiene copolymers (see Coatings Paint). In latex paint the weight ratio S B is usually 60 40 with high conversion. Most of the block copolymers prepared by anionic catalysts, eg, butyUithium, are also elastomers. However, some of these block copolymers are thermoplastic mbbers, which behave like cross-linked mbbers at room temperature but show regular thermoplastic flow at elevated temperatures (45,46). Diblock (styrene—butadiene (SB)) and triblock (styrene—butadiene—styrene (SBS)) copolymers are commercially available. Typically, they are blended with PS to achieve a desirable property, eg, improved clarity/flexibiHty (see Polymerblends) (46). These block copolymers represent a class of new and interesting polymeric materials (47,48). Of particular interest are their morphologies (49—52), solution properties (53,54), and mechanical behavior (55,56). [Pg.507]

Karnes, C.H., The Plate Impact Configuration for Determining Mechanical Properties of Materials at High Strain Rates, in Mechanical Behavior of Materials Under Dynamic Loads (edited by Lindholm, U.S.), Springer-Verlag, New York, 1968, pp. 270-293. [Pg.364]

The mechanical properties of polymers are of interest in all applications where they are used as structural materials. The analysis of the mechanical behavior involves the deformation of a material under the influence of applied forces, and the most important and characteristic mechanical property is the modulus. A modulus is the ratio between the applied stress and the corresponding deformation, the nature of the modulus depending on that of the deformation. Polymers are viscoelastic materials and the high frequencies of most adiabatic techniques do not allow equilibrium to be reached in viscoelastic materials. Therefore, values of moduli obtained by different techniques do not always agree in the literature. [Pg.391]

These differences on the stress-strain behavior of P7MB and PDTMB show the marked influence of the mesomorphic state on the mechanical properties of a polymer. When increasing the drawing temperatures and simultaneously decreasing the strain rate, PDTMB exhibits a behavior nearly elastomeric with relatively low modulus and high draw ratios. On the contrary, P7MB displays the mechanical behavior typical of a semicrystalline polymer. [Pg.391]


See other pages where Properties mechanical behavior is mentioned: [Pg.97]    [Pg.423]    [Pg.105]    [Pg.97]    [Pg.423]    [Pg.105]    [Pg.200]    [Pg.183]    [Pg.269]    [Pg.342]    [Pg.428]    [Pg.153]    [Pg.421]    [Pg.421]    [Pg.49]    [Pg.300]    [Pg.317]    [Pg.317]    [Pg.317]    [Pg.318]    [Pg.319]    [Pg.320]    [Pg.321]    [Pg.322]    [Pg.323]    [Pg.324]    [Pg.325]    [Pg.326]    [Pg.327]    [Pg.328]    [Pg.329]    [Pg.1055]    [Pg.13]    [Pg.14]    [Pg.55]    [Pg.1106]    [Pg.147]   
See also in sourсe #XX -- [ Pg.203 , Pg.207 , Pg.208 ]




SEARCH



MECHANICAL PROPERTIES AND BEHAVIOR

Mechanical behavior

Mechanical behavior and properties of thin films for biomedical applications

Mechanical behavior, dynamic properties

Mechanical properties plastic behavior

Mechanical properties quasi-static behavior

Mechanical properties, behavior, and testing of geotextiles

Oil Absorption Behavior and Its Effects on Mechanical Properties of Biocomposites

© 2024 chempedia.info