Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanical properties strain

Yan] Optical microscopy, EPMA Microstmcture evolution, mechanical properties (strain-stress) at 18 mass% Cr, 9 mass% Ni, 1412 and 1400°C... [Pg.238]

Keywords tension testing, tensiometer, environmental chamber, structural adhesive, FM 300K, hygro-thermo-mechanical properties, strain rate. [Pg.72]

The Institute has many-year experience of investigations and developments in the field of NDT. These are, mainly, developments which allowed creation of a series of eddy current flaw detectors for various applications. The Institute has traditionally studied the physico-mechanical properties of materials, their stressed-strained state, fracture mechanics and developed on this basis the procedures and instruments which measure the properties and predict the behaviour of materials. Quite important are also developments of technologies and equipment for control of thickness and adhesion of thin protective coatings on various bases, corrosion control of underground pipelines by indirect method, acoustic emission control of hydrogen and corrosion cracking in structural materials, etc. [Pg.970]

A schematic stress-strain curve of an uncrimped, ideal textile fiber is shown in Figure 4. It is from curves such as these that the basic factors that define fiber mechanical properties are obtained. [Pg.270]

An important aspect of the mechanical properties of fibers concerns their response to time dependent deformations. Fibers are frequently subjected to conditions of loading and unloading at various frequencies and strains, and it is important to know their response to these dynamic conditions. In this connection the fatigue properties of textile fibers are of particular importance, and have been studied extensively in cycHc tension (23). The results have been interpreted in terms of molecular processes. The mechanical and other properties of fibers have been reviewed extensively (20,24—27). [Pg.271]

The mechanical properties of acryUc and modacryUc fibers are retained very well under wet conditions. This makes these fibers well suited to the stresses of textile processing. Shape retention and maintenance of original bulk in home laundering cycles are also good. Typical stress—strain curves for acryhc and modacryUc fibers are compared with wool, cotton, and the other synthetic fibers in Figure 2. [Pg.275]

The mechanical piopeities of stmctuial foams and thek variation with polymer composition and density has been reviewed (103). The variation of stmctural foam mechanical properties with density as a function of polymer properties is extracted from stress—strain curves and, owkig to possible anisotropy of the foam, must be considered apparent data. These relations can provide valuable guidance toward arriving at an optimum stmctural foam, however. [Pg.413]

Mechanical properties of mbber-modifted epoxy resins depend on the extent of mbber-phase separation and on the morphological features of the mbber phase. Dissolved mbber causes plastic deformation and necking at low strains, but does not result in impact toughening. The presence of mbber particles is a necessary but not sufficient condition for achieving impact resistance. Optimum properties are obtained with materials comprising both dissolved and phase-separated mbber (305). [Pg.422]

The effect of temperature on PSF tensile stress—strain behavior is depicted in Figure 4. The resin continues to exhibit useful mechanical properties at temperatures up to 160°C under prolonged or repeated thermal exposure. PES and PPSF extend this temperature limit to about 180°C. The dependence of flexural moduli on temperature for polysulfones is shown in Figure 5 with comparison to other engineering thermoplastics. [Pg.466]

Fig. 41. Typical stress—strain curve. Points is the yield point of the material the sample breaks at point B. Mechanical properties are identified as follows a = Aa/Ae, modulus b = tensile strength c = yield strength d = elongation at break. The toughness or work to break is the area under the curve. Fig. 41. Typical stress—strain curve. Points is the yield point of the material the sample breaks at point B. Mechanical properties are identified as follows a = Aa/Ae, modulus b = tensile strength c = yield strength d = elongation at break. The toughness or work to break is the area under the curve.
Perhaps more so than any other common metal, the mechanical properties of chromium (8,14—17) depend on purity, history, grain size, strain rate. ... [Pg.114]

L.E. Murr, Residual Microstructure—Mechanical Property Relationships in Shock-Loaded Metals and Alloys, in Shock Waves and High Strain Rate Phenomena in Metals (edited by M.A. Meyers and L.E. Murr), Plenum, New York, 1981, 607 pp. [Pg.213]

R.J. Clifton, On the Analysis of Elastic/Visco-Plastic Waves of Finite Uniaxial Strain, in Shock Waves and the Mechanical Properties of Solids (edited by J.J. Burke and V. Weiss), Syracuse University Press, 1971, pp. 73-119. [Pg.260]

Karnes, C.H., The Plate Impact Configuration for Determining Mechanical Properties of Materials at High Strain Rates, in Mechanical Behavior of Materials Under Dynamic Loads (edited by Lindholm, U.S.), Springer-Verlag, New York, 1968, pp. 270-293. [Pg.364]

Thin-film XRD is important in many technological applications, because of its abilities to accurately determine strains and to uniquely identify the presence and composition of phases. In semiconduaor and optical materials applications, XRD is used to measure the strain state, orientation, and defects in epitaxial thin films, which affect the film s electronic and optical properties. For magnetic thin films, it is used to identify phases and to determine preferred orientations, since these can determine magnetic properties. In metallurgical applications, it is used to determine strains in surfiice layers and thin films, which influence their mechanical properties. For packaging materials, XRD can be used to investigate diffusion and phase formation at interfaces... [Pg.199]

Strained set of lattice parameters and calculating the stress from the peak shifts, taking into account the angle of the detected sets of planes relative to the surface (see discussion above). If the assumed unstrained lattice parameters are incorrect not all peaks will give the same values. It should be borne in mind that, because of stoichiometry or impurity effects, modified surface films often have unstrained lattice parameters that are different from the same materials in the bulk form. In addition, thin film mechanical properties (Young s modulus and Poisson ratio) can differ from those of bulk materials. Where pronounced texture and stress are present simultaneously analysis can be particularly difficult. [Pg.217]


See other pages where Mechanical properties strain is mentioned: [Pg.457]    [Pg.290]    [Pg.457]    [Pg.290]    [Pg.191]    [Pg.314]    [Pg.347]    [Pg.269]    [Pg.290]    [Pg.292]    [Pg.326]    [Pg.320]    [Pg.404]    [Pg.229]    [Pg.74]    [Pg.382]    [Pg.428]    [Pg.153]    [Pg.154]    [Pg.281]    [Pg.303]    [Pg.419]    [Pg.115]    [Pg.121]    [Pg.166]    [Pg.196]    [Pg.50]    [Pg.253]    [Pg.503]    [Pg.86]    [Pg.464]    [Pg.2]    [Pg.345]    [Pg.187]    [Pg.190]    [Pg.208]    [Pg.212]   
See also in sourсe #XX -- [ Pg.426 ]




SEARCH



Mechanical properties strain curve

Mechanical properties stress-strain diagram

Mechanical properties tensile stress-strain

Strain mechanics

Strain properties

Strain rate mechanical properties

© 2024 chempedia.info