Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanical properties strain curve

A schematic stress-strain curve of an uncrimped, ideal textile fiber is shown in Figure 4. It is from curves such as these that the basic factors that define fiber mechanical properties are obtained. [Pg.270]

The mechanical properties of acryUc and modacryUc fibers are retained very well under wet conditions. This makes these fibers well suited to the stresses of textile processing. Shape retention and maintenance of original bulk in home laundering cycles are also good. Typical stress—strain curves for acryhc and modacryUc fibers are compared with wool, cotton, and the other synthetic fibers in Figure 2. [Pg.275]

The mechanical piopeities of stmctuial foams and thek variation with polymer composition and density has been reviewed (103). The variation of stmctural foam mechanical properties with density as a function of polymer properties is extracted from stress—strain curves and, owkig to possible anisotropy of the foam, must be considered apparent data. These relations can provide valuable guidance toward arriving at an optimum stmctural foam, however. [Pg.413]

Fig. 41. Typical stress—strain curve. Points is the yield point of the material the sample breaks at point B. Mechanical properties are identified as follows a = Aa/Ae, modulus b = tensile strength c = yield strength d = elongation at break. The toughness or work to break is the area under the curve. Fig. 41. Typical stress—strain curve. Points is the yield point of the material the sample breaks at point B. Mechanical properties are identified as follows a = Aa/Ae, modulus b = tensile strength c = yield strength d = elongation at break. The toughness or work to break is the area under the curve.
As one example, in thin films of Na or K salts of PS-based ionomers cast from a nonpolar solvent, THF, shear deformation is only present when the ion content is near to or above the critical ion content of about 6 mol% and the TEM scan of Fig. 3, for a sample of 8.2 mol% demonstrates this but, for a THF-cast sample of a divalent Ca-salt of an SPS ionomer, having only an ion content of 4.1 mol%, both shear deformation zones and crazes are developed upon tensile straining in contrast to only crazing for the monovalent K-salt. This is evident from the TEM scans of Fig. 5. For the Ca-salt, one sees both an unfibrillated shear deformation zone, and, within this zone, a typical fibrillated craze. The Ca-salt also develops a much more extended rubbery plateau region than Na or K salts in storage modulus versus temperature curves and this is another indication that a stronger and more stable ionic network is present when divalent ions replace monovalent ones. Still another indication that the presence of divalent counterions can enhance mechanical properties comes from... [Pg.149]

The mechanical properties can be studied by stretching a polymer specimen at constant rate and monitoring the stress produced. The Young (elastic) modulus is determined from the initial linear portion of the stress-strain curve, and other mechanical parameters of interest include the yield and break stresses and the corresponding strain (draw ratio) values. Some of these parameters will be reported in the following paragraphs, referred to as results on thermotropic polybibenzoates with different spacers. The stress-strain plots were obtained at various drawing temperatures and rates. [Pg.391]

The mechanical properties were obtained using a tensile machine at room temperature and for a strain rate of 1000%/h. Each reported value of the modulus was an average of five tests. The tensile modulus Et was taken as the slope of the initial straight line portion of the stress-strain curve. [Pg.692]

An important consideration is the effect of filler and its degree of interaction with the polymer matrix. Under strain, a weak bond at the binder-filler interface often leads to dewetting of the binder from the solid particles to formation of voids and deterioration of mechanical properties. The primary objective is, therefore, to enhance the particle-matrix interaction or increase debond fracture energy. A most desirable property is a narrow gap between the maximum (e ) and ultimate elongation ch) on the stress-strain curve. The ratio, e , eh, may be considered as the interface efficiency, a ratio of unity implying perfect efficiency at the interfacial Junction. [Pg.715]

One of the most informative properties of any material is their mechanical behavior specifically the determination of its stress-strain curve in tension (ASTM D 638). This is usually accomplished in a testing machine by measuring continuously the elongation (strain) in a test sample as it is stretched by an... [Pg.45]

However, not all properties are improved by filler. One notable feature of the mechanical behaviour of filled elastomers is the phenomenon of stresssoftening. This manifests itself as a loss of stiffness when the composite material is stretched and then unloaded. In a regime of repeated loading and unloading, it is found that part of the second stress-strain curve falls below the original curve (see Figure 7.13). This is the direct opposite of what happens to metals, and the underlying reasons for it are not yet fully understood. [Pg.114]

Recent work has focused on a variety of thermoplastic elastomers and modified thermoplastic polyimides based on the aminopropyl end functionality present in suitably equilibrated polydimethylsiloxanes. Characteristic of these are the urea linked materials described in references 22-25. The chemistry is summarized in Scheme 7. A characteristic stress-strain curve and dynamic mechanical behavior for the urea linked systems in provided in Figures 3 and 4. It was of interest to note that the ultimate properties of the soluble, processible, urea linked copolymers were equivalent to some of the best silica reinforced, chemically crosslinked, silicone rubber... [Pg.186]

It Is well known that mechanical properties of polymeric materials are greatly deteriorated by UV exposure (2-j)). The nature of this deterioration was determined using non-strained samples which were photooxidized at 37°C. Engineering stress-strain curves as a function of UV exposure are shown in Figure 1. The numbers next to each curve represent days of UV exposure. In terms of degradation, the points of interest are ... [Pg.265]

A representative stress-strain curve of one of the PDMS-CaO-Si02 nano-hybrids is shown in Figure 11.7, in comparison with that reported for human cancellous bone [29]. Unlike the usual brittle ceramics, the nano-hybrid was deformable and showed mechanical properties analogous to those of human cancellous bone. [Pg.347]

Likewise, the mechanical properties of the copolymers were nearly identical or even somewhat enhanced towards the polyimide homopolymer in terms of the modulus and tensile strength values [44,47]. For most of the block copolymers, the elongations to break were substantially higher than that of PMDA/ODA polyimide (Table 4). The shape of the polyimide stress-strain curve is similar to that of a work-hardened metal with no distinguishable yield point... [Pg.80]

The mechanical response of polypropylene foam was studied over a wide range of strain rates and the linear and non-linear viscoelastic behaviour was analysed. The material was tested in creep and dynamic mechanical experiments and a correlation between strain rate effects and viscoelastic properties of the foam was obtained using viscoelasticity theory and separating strain and time effects. A scheme for the prediction of the stress-strain curve at any strain rate was developed in which a strain rate-dependent scaling factor was introduced. An energy absorption diagram was constructed. 14 refs. [Pg.46]

The phenomenological ordering of polymers projected for use as constructing materials is not an easy matter. Sometimes the temperature stability is used as a criterion, i.e., the temperature up to which the mechanical properties remain more or less constant. Another attempt for classification, uses the E modulus or the shape of the curve of stress-strain measurements (see Sect. 2.3.5.1). In general one can say that semicrystalline thermoplastics are stiff, tough, and impact-resistant while amorphous thermoplastics tend to be brittle. Their E... [Pg.21]


See other pages where Mechanical properties strain curve is mentioned: [Pg.457]    [Pg.269]    [Pg.277]    [Pg.290]    [Pg.326]    [Pg.404]    [Pg.153]    [Pg.281]    [Pg.86]    [Pg.175]    [Pg.466]    [Pg.152]    [Pg.391]    [Pg.430]    [Pg.108]    [Pg.66]    [Pg.374]    [Pg.616]    [Pg.359]    [Pg.365]    [Pg.361]    [Pg.136]    [Pg.309]    [Pg.351]    [Pg.119]    [Pg.196]    [Pg.487]    [Pg.894]    [Pg.71]    [Pg.119]    [Pg.160]    [Pg.295]    [Pg.292]    [Pg.244]   
See also in sourсe #XX -- [ Pg.427 ]




SEARCH



Mechanical properties curve

Mechanical properties strain

Strain mechanics

Strain properties

© 2024 chempedia.info