Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanical properties relaxation

Chapter 4(71) focuses on the characterization of sorption kinetics in several glassy polymers for a broad spectrum of penetrants ranging from the fixed gases to organic vapors. The sorption kinetics and equilibria of these diverse penetrants are rationalized in terms of the polymer-penetrant interaction parameter and the effective glass transition of the polymer relative to the temperature of measurement. The kinetic response is shown to transition systematically from concentration independent diffusion, to concentration dependent diffusion, and finally to complex nonFickian responses. The nonFickian behavior involves so-called "Case II" and other anomalous situations in which a coupling exists between the diffusion process and mechanical property relaxations in the polymer that are induced by the invasion of the penetrant (72-78). ... [Pg.13]

Direct determination of relaxation time through viscoelastic studies (all mechanical properties involve this important parameter). [Pg.124]

The isothermal curves of mechanical properties in Chap. 3 are actually master curves constructed on the basis of the principles described here. Note that the manipulations are formally similar to the superpositioning of isotherms for crystallization in Fig. 4.8b, except that the objective here is to connect rather than superimpose the segments. Figure 4.17 shows a set of stress relaxation moduli measured on polystyrene of molecular weight 1.83 X 10 . These moduli were measured over a relatively narrow range of readily accessible times and over the range of temperatures shown in Fig. 4.17. We shall leave as an assignment the construction of a master curve from these data (Problem 10). [Pg.258]

The time-temperature superpositioning principle was applied f to the maximum in dielectric loss factors measured on poly(vinyl acetate). Data collected at different temperatures were shifted to match at Tg = 28 C. The shift factors for the frequency (in hertz) at the maximum were found to obey the WLF equation in the following form log co + 6.9 = [ 19.6(T -28)]/[42 (T - 28)]. Estimate the fractional free volume at Tg and a. for the free volume from these data. Recalling from Chap. 3 that the loss factor for the mechanical properties occurs at cor = 1, estimate the relaxation time for poly(vinyl acetate) at 40 and 28.5 C. [Pg.269]

The dynamic mechanical properties of PTFE have been measured at frequencies from 0.033 to 90 Uz. Abmpt changes in the distribution of relaxation times are associated with the crystalline transitions at 19 and 30°C (75). The activation energies are 102.5 kj/mol (24.5 kcal/mol) below 19°C, 510.4 kJ/mol (122 kcal/mol) between the transitions, and 31.4 kJ/mol (7.5 kcal/mol) above 30°C. [Pg.351]

Cooling rates can affect product properties in a number of ways. If the polymer melt is sheared into shape the molecules will be oriented. On release of shearing stresses the molecules will tend to re-coil or relax, a process which becomes slower as the temperature is reduced towards the Tg. If the mass solidifies before relaxation is complete (and this is commonly the case) frozen-in orientation will occur and the polymeric mass will be anisotropic with respect to mechanical properties. Sometimes such built-in orientation is deliberately introduced, such as... [Pg.174]

In the preparation and processing of ionomers, plasticizers may be added to reduce viscosity at elevated temperatures and to permit easier processing. These plasticizers have an effect, as well, on the mechanical properties, both in the rubbery state and in the glassy state these effects depend on the composition of the ionomer, the polar or nonpolar nature of the plasticizer and on the concentration. Many studies have been carried out on plasticized ionomers and on the influence of plasticizer on viscoelastic and relaxation behavior and a review of this subject has been given 119]. However, there is still relatively little information on effects of plasticizer type and concentration on specific mechanical properties of ionomers in the glassy state or solid state. [Pg.150]

Aside from ion content, a wide range of properties is available in ionomers by control of various processing variables, such as degree of conversion (neutralization), type of counterion, plasticizer content and thermal treatment. Various examples illustrating possible effects of these variables on mechanical relaxation behavior and on such mechanical properties as stiffness, strength, and time- or energy-to-fracture have been given. [Pg.152]

Basics Creep data can be very useful to the designer. In the interest of sound design-procedure, the necessary long-term creep information should be obtained on the perspective specific plastic, under the conditions of product usage (Chapter 5, MECHANICAL PROPERTY, Long-Term Stress Relaxation/Creep). In addition to the creep data, a stress-strain diagram under similar conditions should be obtained. The combined information will provide the basis for calculating the predictability of the plastic performance. [Pg.65]

The time/temperature-dependent change in mechanical properties results from stress relaxation and other viscoelastic phenomena that are typical of these plastics. When the change is an unwanted limitation it is called creep. When the change is skillfully adapted to use in the overall design, it is referred to as plastic memory. [Pg.368]

Polycarbonate (PC) serves as a convenient example for both, the direct determination of the distribution of correlation times and the close connection of localized motions and mechanical properties. This material shows a pronounced P-relaxation in the glassy state, but the nature of the corresponding motional mechanism was not clear 76 80> before the advent of advanced NMR techniques. Meanwhile it has been shown both from 2H NMR 17) and later from 13C NMRSI) that only the phenyl groups exhibit major mobility, consisting in 180° flips augmented by substantial small angle fluctuations about the same axis, reaching an rms amplitude of 35° at 380 K, for details see Ref. 17). [Pg.44]

Apparently local motions indicating differences in packing are closely related to the mechanical properties of glassy polymers. One of the puzzling features of the P-relaxation in PC as in other glassy polymers 3 6 76 77) is that it often is suppressed if the glass transition temperature is lowered by adding a plasticizer. The material then becomes brittle, which severely limits the applications of such polymers. Such low... [Pg.45]

Even when they have a partial crystallinity, conducting polymers swell and shrink, changing their volume in a reverse way during redox processes a relaxation of the polymeric structure has to occur, decreasing the crystallinity to zero percent after a new cycle. In the literature, different relaxation theories (Table 7) have been developed that include structural aspects at the molecular level magnetic or mechanical properties of the constituent materials at the macroscopic level or the depolarization currents of the materials. [Pg.373]

There are two further related sets of tests that can be used to give information on the mechanical properties of viscoelastic polymers, namely creep and stress relaxation. In a creep test, a constant load is applied to the specimen and the elongation is measured as a function of time. In a stress relaxation test, the specimen is strained quickly to a fixed amount and the stress needed to maintain this strain is also measured as a function of time. [Pg.104]

The effect of oxidative irradiation on mechanical properties on the foams of E-plastomers has been investigated. In this study, stress relaxation and dynamic rheological experiments are used to probe the effects of oxidative irradiation on the stmcture and final properties of these polymeric foams. Experiments conducted on irradiated E-plastomer (octene comonomer) foams of two different densities reveal significantly different behavior. Gamma irradiation of the lighter foam causes stmctural degradation due to chain scission reactions. This is manifested in faster stress-relaxation rates and lower values of elastic modulus and gel fraction in the irradiated samples. The incorporation of O2 into the polymer backbone, verified by IR analysis, conftrms the hypothesis of... [Pg.181]

Resilin has a remarkably high fatigue lifetime (probably >500 million cycles) and our aim is to reproduce this desirable mechanical property in synthetic materials derived from our studies of resilin structure and function. We believe that recombinant resilin-like materials may be used, in the future, in the medical device field as components of prosthetic implants, including spinal disks and synthetic arteries. Spinal disks, for example, must survive for at least 100 million cycles of contraction and relaxation [30]. [Pg.257]

Contrary to the phase separation curve, the sol/gel transition is very sensitive to the temperature more cations are required to get a gel phase when the temperature increases and thus the extension of the gel phase decreases [8]. The sol/gel transition as determined above is well reproducible but overestimates the real amount of cation at the transition. Gelation is a transition from liquid to solid during which the polymeric systems suffers dramatic modifications on their macroscopic viscoelastic behavior. The whole phenomenon can be thus followed by the evolution of the mechanical properties through dynamic experiments. The behaviour of the complex shear modulus G (o)) reflects the distribution of the relaxation time of the growing clusters. At the gel point the broad distribution of... [Pg.41]

The synthesis of organotin oligosteracrylate i.e. dimethylstannyl dimethacrylate, and the production of the cross-linked homopolymers on its basis have been reported. Morphology, mechanical and relaxation properties of poly(dimethyl-stannyl dimethacrylate) have been investigated 67). [Pg.120]

Material properties at a critical point were believed to be independent of the structural details of the materials. Such universality has yet to be confirmed for gelation. In fact, experiments show that the dynamic mechanical properties of a polymer are intimately related to its structural characteristics and forming conditions. A direct relation between structure and relaxation behavior of critical gels is still unknown since their structure has yet evaded detailed investigation. Most structural information relies on extrapolation onto the LST. [Pg.172]

The mechanical properties of two-phase polymeric systems, such as block and graft polymers and polyblends, are discussed in detail in Chapter 7. However, the creep and stress-relaxation behavior of these materials will be examined at this point. Most of the systems of practical interest consist of a combination of a rubbery phase and a rigid phase. In many cases the rigid phase is polystyrene since such materials are tough, yet low in price. [Pg.117]

Time is the major (actor in determining the mechanical properties of a polymer. This is seen directly in creep and stress-relaxation experiments. These tests cover long periods of time, so that they are sensitive to the types of molecular motions that require long times. Tfrey give little direct information on the types of molecular motion that take place at short times. However, by using the time-temperature superposition principle and the WLF equations, access to these short times can be achieved even though they may not easily be attainable by direct experimentation. [Pg.118]


See other pages where Mechanical properties relaxation is mentioned: [Pg.207]    [Pg.207]    [Pg.187]    [Pg.309]    [Pg.326]    [Pg.465]    [Pg.509]    [Pg.2002]    [Pg.154]    [Pg.199]    [Pg.290]    [Pg.435]    [Pg.44]    [Pg.388]    [Pg.23]    [Pg.24]    [Pg.25]    [Pg.46]    [Pg.107]    [Pg.7]    [Pg.156]    [Pg.173]    [Pg.204]    [Pg.328]    [Pg.338]    [Pg.905]    [Pg.42]    [Pg.722]    [Pg.296]    [Pg.430]    [Pg.381]   
See also in sourсe #XX -- [ Pg.430 ]




SEARCH



Dispersion mechanisms structural relaxation properties

MECHANICAL RELAXATION

Relaxation mechanisms

Relaxation properties

© 2024 chempedia.info