Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry devices

Zimmerman, R., Heger, H.J., Kettrup, H.J., Boesl, U. (1997) A mobile resonance-enhanced multiphoton ionization time-of-flight mass spectrometry device for online analysis of aromatic pollutants in waste incinerator flue gases first results. Rapid Commun. Mass Spectrom. 11 1095-1102. [Pg.362]

The nebulization concept has been known for many years and is commonly used in hair and paint spays and similar devices. Greater control is needed to introduce a sample to an ICP instrument. For example, if the highest sensitivities of detection are to be maintained, most of the sample solution should enter the flame and not be lost beforehand. The range of droplet sizes should be as small as possible, preferably on the order of a few micrometers in diameter. Large droplets contain a lot of solvent that, if evaporated inside the plasma itself, leads to instability in the flame, with concomitant variations in instrument sensitivity. Sometimes the flame can even be snuffed out by the amount of solvent present because of interference with the basic mechanism of flame propagation. For these reasons, nebulizers for use in ICP mass spectrometry usually combine a means of desolvating the initial spray of droplets so that they shrink to a smaller, more uniform size or sometimes even into small particles of solid matter (particulates). [Pg.106]

The term nebulizer is used generally as a description for any spraying device, such as the hair spray mentioned above. It is normally applied to any means of forming an aerosol spray in which a volume of liquid is broken into a mist of vapor and small droplets and possibly even solid matter. There is a variety of nebulizer designs for transporting a solution of analyte in droplet form to a plasma torch in ICP/MS and to the inlet/ionization sources used in electrospray and mass spectrometry (ES/MS) and atmospheric-pressure chemical ionization and mass spectrometry (APCI/MS). [Pg.138]

TaF has been characterized by ir, Raman, x-ray diffraction, and mass spectrometry (3,11,12). TaF has been used as a superacid catalyst for the conversion of CH to gasoline-range hydrocarbons (qv) (12) in the manufacture of fluoride glass and fluoride glass optical fiber preforms (13), and incorporated in semiconductor devices (14). TaF is also a catalyst for the Hquid-phase addition of HF to polychlorinated ethenes (15). The chemistry of TaF has been reviewed (1,16—19). Total commercial production for TaF is thought to be no more than a few hundred kilograms aimuaHy. [Pg.252]

The use of separation techniques, such as gel permeation and high pressure Hquid chromatography interfaced with sensitive, silicon-specific aas or ICP detectors, has been particularly advantageous for the analysis of siUcones in environmental extracts (469,483—486). Supercritical fluid chromatography coupled with various detection devices is effective for the separation of siUcone oligomers that have molecular weights less than 3000 Da. Time-of-flight secondary ion mass spectrometry (TOF-sims) is appHcable up to 10,000 Da (487). [Pg.60]

In addition to the wet and optical spectrometric methods, which are often used to analyse elements present in very small proportions, there are also other techniques which can only be mentioned here. One is the method of mass spectrometry, in which the proportions of separate isotopes can be measured this can be linked to an instrument called a field-ion microscope, in which as we have seen individual atoms can be observed on a very sharp hemispherical needle tip through the mechanical action of a very intense electric field. Atoms which have been ionised and detached can then be analysed for isotopic mass. This has become a powerful device for both curiosity-driven and applied research. [Pg.234]

Technological advances in electronics early in the twentieth century led to the invention of the mass spectrometer, a device for determining the mass of an atom (Fig. B.5). Mass spectrometers are described more fully in Major Technique 6 after Chapter 18. Mass spectrometry has been used to determine the masses of the atoms of all the elements. We now know, for example, that the mass of a hydrogen atom is 1.67 X 10 27 kg and that of a carbon atom is 1.99 X 10 26 kg. Even the heaviest atoms have masses of only about 5 X 10-25 kg. Once we know the mass of an individual atom, we can determine the number of those atoms in a given mass of element simply by dividing the mass of the sample by the mass of one atom. [Pg.41]

There are a number of different mass separation devices - analysers - used in mass spectrometry and each has its own advantages and disadvantages. Those most likely to be encountered by users of LC-MS are described briefly below, while more detailed descriptions may be found elsewhere [2-4]. One property that is important in defining the analytical capabihties of a mass analyser is the resolution which it may achieve. [Pg.57]

Resolution A term which indicates the ability of a device/technique to sepa-rate/distingnish between closely related signals. In chromatography, it relates to the ability to separate componnds with similar retention characteristics, and in mass spectrometry to the ability to separate ions of similar m/z ratios. [Pg.310]

Using threshold ionization mass spectrometry and in situ ellipsometry, Schroder and Bauer [555] have shown that the Si2H4 radical may well be the species responsible for deposition, rather than SiH3 as in PECVD. This larger and less mobile precursor is thought to be the cause of the observed differences in the deposition conditions required in HWCVD and PECVD to obtain device quality material. [Pg.163]

The most widely regarded approach to accomplish the determination of as many pesticides as possible in as few steps as possible is to use MS detection. MS is considered a universally selective detection method because MS detects all compounds independently of elemental composition and further separates the signal into mass spectral scans to provide a high degree of selectivity. Unlike GC with selective detectors, or even atomic emission detection (AED), GC/MS may provide acceptable confirmation of the identity of analytes without the need for further information. This reduces the need to re-inject a sample into a separate GC system (usually GC/MS) for pesticide confirmation. Through the use of selected ion monitoring (SIM), efficient ion-trap or quadrupole devices, and/or tandem mass spectrometry (MS/MS), modern GC/MS instruments provide LODs similar to or lower than those of selective detectors, depending on the analytes, methods, and detectors. [Pg.762]

Li, J., Kelly, J.F., Chernushevich, I., Harrison, D.J., and Thibault P., Separation and identification of peptides from gel-isolated membrane proteins using a microfabricated device for combined capillary electrophoresis/nanoelectro-spray mass spectrometry, Anal. Chem. 72, 599, 2000. [Pg.437]

The mass spectrometer is a mass-flow sensitive device, which means that the signal is proportional to the mass flow dm/dl of the analyte, i.e. the concentration times the flow-rate. It is only now possible to realise the high (theoretically unlimited) mass range and the high-sensitivity multichannel recording capabilities that were anticipated many years ago. Of considerable interest to the problem of polymer/additive deformulation are some of the latest developments in mass spectrometry, namely atmospheric pressure ionisation (API), and the revival of time-of-flight spectrometers (allowing GC-ToFMS, MALDI-ToFMS, etc.). [Pg.351]

The technique is referred to by several acronyms including LAMMA (Laser Microprobe Mass Analysis), LIMA (Laser Ionisation Mass Analysis), and LIMS (Laser Ionisation Mass Spectrometry). It provides a sensitive elemental and/or molecular detection capability which can be used for materials such as semiconductor devices, integrated optical components, alloys, ceramic composites as well as biological materials. The unique microanalytical capabilities that the technique provides in comparison with SIMS, AES and EPMA are that it provides a rapid, sensitive, elemental survey microanalysis, that it is able to analyse electrically insulating materials and that it has the potential for providing molecular or chemical bonding information from the analytical volume. [Pg.59]

Direct insertion probe pyrolysis mass spectrometry (DPMS) utilises a device for introducing a single sample of a solid or liquid, usually contained in a quartz or other non-reactive sample holder, into a mass spectrometer ion source. A direct insertion probe consists of a shaft having a sample holder at one end [70] the probe is inserted through a vacuum lock to place the sample holder near to the ion source of the mass spectrometer. The sample is vaporized by heat from the ion source or by heat from a separate heater that surrounds the sample holder. Sample molecules are evaporated into the ion source where they are then ionized as gas-phase molecules. In a recent study, Uyar et al. [74] used such a device for studying the thermal stability of coalesced polymers of polycarbonate, PMMA and polylvinyl acetate) (PVAc) [75] and their binary and ternary blends [74] obtained from their preparation as inclusion compounds in cyclodextrins. [Pg.426]

Conductometric transducers, as the oldest electrochemical devices, seem not to enjoy wide applications due to their poor selectivity. For example, Yagiuda et al. proposed a conductometric immunosensor for the determination of methamphetamine (MA) in urine [89], The decrease in the conductivity between a pair of platinum electrodes might result from the direct attachment of MA onto the anti-MA antibodies immobilized on the electrode surface. The system was claimed to be a useful detection technique of MA in comparison with a gas chromatography-mass spectrometry method. [Pg.267]


See other pages where Mass spectrometry devices is mentioned: [Pg.127]    [Pg.892]    [Pg.127]    [Pg.892]    [Pg.478]    [Pg.400]    [Pg.14]    [Pg.446]    [Pg.178]    [Pg.28]    [Pg.49]    [Pg.52]    [Pg.141]    [Pg.100]    [Pg.14]    [Pg.378]    [Pg.390]    [Pg.395]    [Pg.409]    [Pg.410]    [Pg.427]    [Pg.451]    [Pg.454]    [Pg.456]    [Pg.531]    [Pg.651]    [Pg.654]    [Pg.735]    [Pg.307]    [Pg.41]    [Pg.502]    [Pg.43]    [Pg.384]    [Pg.596]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



© 2024 chempedia.info