Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass continuous phase

Suspension polymerization is designed to combine the advantages of both the bulk and solution polymerization techniques. It is one of the extensively employed techniques in the mass production of vinyl and related polymers. Suspension polymerization (also referred to as bead or pearl polymerization) is carried out by suspending the monomer as droplets by efficient agitation in a large mass (continuous phase) of nonsolvent, commonly referred to as the dispersion or. suspension medium. Water is invariably used as the suspension medium for all water insoluble monomers because of the many advantages that go with it. Styrene, methyl methacrylate, vinyl chloride, and vinyl acetate are polymerized by the suspension... [Pg.554]

If a linear mbber is used as a feedstock for the mass process (85), the mbber becomes insoluble in the mixture of monomers and SAN polymer which is formed in the reactors, and discrete mbber particles are formed. This is referred to as phase inversion since the continuous phase shifts from mbber to SAN. Grafting of some of the SAN onto the mbber particles occurs as in the emulsion process. Typically, the mass-produced mbber particles are larger (0.5 to 5 llm) than those of emulsion-based ABS (0.1 to 1 llm) and contain much larger internal occlusions of SAN polymer. The reaction recipe can include polymerization initiators, chain-transfer agents, and other additives. Diluents are sometimes used to reduce the viscosity of the monomer and polymer mixture to faciUtate processing at high conversion. The product from the reactor system is devolatilized to remove the unreacted monomers and is then pelletized. Equipment used for devolatilization includes single- and twin-screw extmders, and flash and thin film evaporators. Unreacted monomers are recovered for recycle to the reactors to improve the process yield. [Pg.204]

The values of k and hence Sb depend on whether the phase under consideration is the continuous phase, c, surrounding the drop, or the dispersed phase, d, comprising the drop. The notations and Sh are used for the respective mass-transfer coefficients and Sherwood numbers. [Pg.63]

Interfacial Contact Area and Approach to Equilibrium. Experimental extraction cells such as the original Lewis stirred cell (52) are often operated with a flat Hquid—Hquid interface the area of which can easily be measured. In the single-drop apparatus, a regular sequence of drops of known diameter is released through the continuous phase (42). These units are useful for the direct calculation of the mass flux N and hence the mass-transfer coefficient for a given system. [Pg.64]

The role of coalescence within a contactor is not always obvious. Sometimes the effect of coalescence can be inferred when the holdup is a factor in determining the Sauter mean diameter (67). If mass transfer occurs from the dispersed (d) to the continuous (e) phase, the approach of two drops can lead to the formation of a local surface tension gradient which promotes the drainage of the intervening film of the continuous phase (75) and thereby enhances coalescence. It has been observed that d-X.o-c mass transfer can lead to the formation of much larger drops than for the reverse mass-transfer direction, c to... [Pg.69]

R is rate of reaction per unit area, a is interfacial area per unit volume, S is solubiHty of solute in continuous phase, D is diffusivity of solute, k is rate constant, kj is mass-transfer coefficient, is concentration of reactive species, and Z is stoichiometric coefficient. When Dk is considerably greater (10 times) than Ra = aS Dk. [Pg.430]

Theoretically, be correlated to interfacial tension, continuous-phase density, and power per unit mass swept by the impeller ... [Pg.431]

Static mixing of immiscible Hquids can provide exceUent enhancement of the interphase area for increasing mass-transfer rate. The drop size distribution is relatively narrow compared to agitated tanks. Three forces are known to influence the formation of drops in a static mixer shear stress, surface tension, and viscous stress in the dispersed phase. Dimensional analysis shows that the drop size of the dispersed phase is controUed by the Weber number. The average drop size, in a Kenics mixer is a function of Weber number We = df /a, and the ratio of dispersed to continuous-phase viscosities (Eig. 32). [Pg.436]

Effect on continuous-phase mass-transfer coefficient... [Pg.1425]

Coalescence The coalescence of droplets can occur whenever two or more droplets collide and remain in contact long enough for the continuous-phase film to become so thin that a hole develops and allows the liquid to become one body. A clean system with a high interfacial tension will generally coalesce quite rapidly. Particulates and polymeric films tend to accumulate at droplet surfaces and reduce the rate of coalescence. This can lead to the ouildup of a rag layer at the liquid-hquid interface in an extractor. Rapid drop breakup and rapid coalescence can significantly enhance the rate of mass transfer between phases. [Pg.1470]

TABLE 23-14 Continuous-Phase Mass-Transfer Coefficients and Interfacial Areas in Liquid/Liquid Contactors ... [Pg.2117]

An important mixing operation involves bringing different molecular species together to obtain a chemical reaction. The components may be miscible liquids, immiscible liquids, solid particles and a liquid, a gas and a liquid, a gas and solid particles, or two gases. In some cases, temperature differences exist between an equipment surface and the bulk fluid, or between the suspended particles and the continuous phase fluid. The same mechanisms that enhance mass transfer by reducing the film thickness are used to promote heat transfer by increasing the temperature gradient in the film. These mechanisms are bulk flow, eddy diffusion, and molecular diffusion. The performance of equipment in which heat transfer occurs is expressed in terms of forced convective heat transfer coefficients. [Pg.553]

Most theoretical studies of heat or mass transfer in dispersions have been limited to studies of a single spherical bubble moving steadily under the influence of gravity in a clean system. It is clear, however, that swarms of suspended bubbles, usually entrained by turbulent eddies, have local relative velocities with respect to the continuous phase different from that derived for the case of a steady rise of a single bubble. This is mainly due to the fact that in an ensemble of bubbles the distributions of velocities, temperatures, and concentrations in the vicinity of one bubble are influenced by its neighbors. It is therefore logical to assume that in the case of dispersions the relative velocities and transfer rates depend on quantities characterizing an ensemble of bubbles. For the case of uniformly distributed bubbles, the dispersed-phase volume fraction O, particle-size distribution, and residence-time distribution are such quantities. [Pg.333]

In a liquid-liquid extraction unit, spherical drops of solvent of uniform size are continuously fed to a continuous phase of lower density which is flowing vertically upwards, and hence countercurrently with respect to the droplets. The resistance to mass transfer may be regarded as lying wholly within the drops and the penetration theory may be applied. The upward velocity of the liquid, which may be taken as uniform over the cross-section of the vessel, is one-half of the terminal falling velocity of the droplets in the still liquid. [Pg.859]

In a drop extractor, liquid droplets of approximate uniform size and spherical shape are formed at a series of nozzles and rise eountercurrently through the continuous phase which is flowing downwards at a velocity equal to one half of the terminal rising velocity of the droplets. The flowrates of both phases are then increased by 25 per cent. Because of the greater shear rate at the nozzles, the mean diameter of the droplets is however only 90 per cent of the original value. By what factor will the overall mass transfer rate change ... [Pg.860]

Mass transfer in the continuous phase is less of a problem for liquid-liquid systems unless the drops are very small or the velocity difference between the phases is small. In gas-liquid systems, the resistance is always on the liquid side, unless the reaction is very fast and occurs at the interface. The Sherwood number for mass transfer in a system with dispersed bubbles tends to be almost constant and mass transfer is mainly a function of diffusivity, bubble size, and local gas holdup. [Pg.347]

An effective hquid-liquid reactor may be designed to obtain drops that continuously break up and coalesce, or it may be designed to obtain very small drops that have very efficient mass transfer and follow the continuous phase with a low rate of coalescence. The former will require a much larger reactor, but the separation of the phases after reaction is simpler. [Pg.351]

The simplest form of extractor is a spray column. The column is empty one liquid forms a continuous phase and the other liquid flows up, or down, the column in the form of droplets. Mass transfer takes places to, or from, the droplets to the continuous phase. The efficiency of a spray tower will be low, particularly with large diameter columns, due to back mixing. The efficiency of the basic, empty, spray column can be improved by installing plates or packing. [Pg.623]

As in Section II,A, a set of steady-state mass and energy balances are formulated so that the parameters that must be evaluated can be identified. The annular flow patterns are included in Regime II, and the general equations formulated in Section II,A,2,a, require a detailed knowledge of the hydrodynamics of both continuous phases and droplet interactions. Three simplified cases were formulated, and the discussion in this section is based on Case I. The steady-state mass balances are... [Pg.40]


See other pages where Mass continuous phase is mentioned: [Pg.63]    [Pg.69]    [Pg.74]    [Pg.74]    [Pg.321]    [Pg.429]    [Pg.512]    [Pg.616]    [Pg.1447]    [Pg.1476]    [Pg.1476]    [Pg.1476]    [Pg.1479]    [Pg.1480]    [Pg.263]    [Pg.554]    [Pg.637]    [Pg.285]    [Pg.285]    [Pg.334]    [Pg.364]    [Pg.370]    [Pg.859]    [Pg.492]    [Pg.146]    [Pg.255]    [Pg.265]    [Pg.436]    [Pg.126]    [Pg.126]    [Pg.25]    [Pg.30]   
See also in sourсe #XX -- [ Pg.313 ]




SEARCH



© 2024 chempedia.info