Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface droplet

The charge on a droplet surface produces a repulsive barrier to coalescence into the London-van der Waals primary attractive minimum (see Section VI-4). If the droplet size is appropriate, a secondary minimum exists outside the repulsive barrier as illustrated by DLVO calculations shown in Fig. XIV-6 (see also Refs. 36-38). Here the influence of pH on the repulsive barrier between n-hexadecane drops is shown in Fig. XIV-6a, while the secondary minimum is enlarged in Fig. XIV-6b [39]. The inset to the figures contains t,. the coalescence time. Emulsion particles may flocculate into the secondary minimum without further coalescence. [Pg.508]

The Langevin model has been employed extensively in the literature for various numerical and physical reasons. For example, the Langevin framework has been used to eliminate explicit representation of water molecules [22], treat droplet surface effects [23, 24], represent hydration shell models in large systems [25, 26, 27], or enhance sampling [28, 29, 30]. See Pastor s comprehensive review [22]. [Pg.234]

Most theories of droplet combustion assume a spherical, symmetrical droplet surrounded by a spherical flame, for which the radii of the droplet and the flame are denoted by and respectively. The flame is supported by the fuel diffusing from the droplet surface and the oxidant from the outside. The heat produced in the combustion zone ensures evaporation of the droplet and consequently the fuel supply. Other assumptions that further restrict the model include (/) the rate of chemical reaction is much higher than the rate of diffusion and hence the reaction is completed in a flame front of infinitesimal thickness (2) the droplet is made up of pure Hquid fuel (J) the composition of the ambient atmosphere far away from the droplet is constant and does not depend on the combustion process (4) combustion occurs under steady-state conditions (5) the surface temperature of the droplet is close or equal to the boiling point of the Hquid and (6) the effects of radiation, thermodiffusion, and radial pressure changes are negligible. [Pg.520]

Coalescence The coalescence of droplets can occur whenever two or more droplets collide and remain in contact long enough for the continuous-phase film to become so thin that a hole develops and allows the liquid to become one body. A clean system with a high interfacial tension will generally coalesce quite rapidly. Particulates and polymeric films tend to accumulate at droplet surfaces and reduce the rate of coalescence. This can lead to the ouildup of a rag layer at the liquid-hquid interface in an extractor. Rapid drop breakup and rapid coalescence can significantly enhance the rate of mass transfer between phases. [Pg.1470]

The stoichiometric flame temperature ( Tg ) is used to characterize the burning gas surrounding the droplets because combustion naturally predominates at a distance where the fastest burning mixture is produced. This mixture approximates to the stoichiometric composition. The selection of the droplet surface temperature BP is discussed below. The enthalpy change for vaporization AH is given by... [Pg.210]

In addition to the traditional additives that suppress dewpoint corrosion, future developments are likely to aid atomization by reducing droplet surface tension and stimulating combustion catalytically. [Pg.378]

Structured laundry liquids are currently available in Europe and were recently introduced in the United States [50,51]. These products typically contain high levels of surfactants and builder salts, as well as enzymes and other additives. In the presence of high ionic strength, the combination of certain anionic and nonionic surfactants form lamellar liquid crystals. Under the microscope (electron microscope, freeze fracturing) these appear as round droplets with an onion-like, multilayered structure. Formation of these droplets or sperulites permits the incorporation of high levels of surfactants and builders in a pourable liquid form. Stability of the dispersion is enhanced by the addition of polymers that absorb onto the droplet surface to reduce aggregation. [Pg.138]

A small amount of a liquid tends to take a spherical shape For example, mercury drops are nearly spherical and water drips from a faucet in nearly spherical liquid droplets. Surface tension, which measures the resistance of a liquid to an increase in its surface area, is the physical property responsible for this behavior. [Pg.769]

To mitigate the effects of corrosion resulting from the presence of salts, it is advantageous to reduce the salt concentration to the range of 3 to 5 ppm. Typically, brine droplets in crude oil are stabilized by a mixture of surface-active components such as waxes, asphaltenes, resins, and naphthenic acids that are electrostatically bound to the droplets surface. Such components provide an interfacial film over the brine droplet, resulting in a diminished droplet coalescence. Adding water to the crude oil can decrease the concentration of the surface-active components on the surface of each droplet, because the number of droplets is increased without increasing component concentration. [Pg.340]

Spray dryers are normally used for liquid and dilute slurry feeds, but can be designed to handle any material that can be pumped. The material to be dried is atomised in a nozzle, or by a disc-type atomiser, positioned at the top of a vertical cylindrical vessel. Hot air flows up the vessel (in some designs downward) and conveys and dries the droplets. The liquid vaporises rapidly from the droplet surface and open, porous particles are formed. The dried particles are removed in a cyclone separator or bag filter. [Pg.432]

A reduction in the electrical charge is known to increase the flocculation and coalescence rates. Sufficient high zeta potential (> — 30 mV) ensures a stable emulsion by causing repulsion of adjacent droplets. The selection of suitable surfactants can help to optimize droplet surface charges and thus enhance emulsion stability. Lipid particles with either positive or negative surface charges are more stable and are cleared from the bloodstream more rapidly than those with neutral charge [192, 193]. [Pg.277]

Additional Factors Affecting Evaporation Times. For liquid drops containing solids, which lower the normal vapor pressure of the liquid, the net effect of the solids is to increase the time for complete evaporation, Marshall (1954). The presence of solids introduces an additional complication associated with the changing droplet surface temperature during the evaporation process. This gives rise to longer evaporation times. [Pg.343]

Figure 42. (a) The droplet surface area density, S, as a function of droplet... [Pg.229]

In this model, two level-set functions (d, p) are defined to represent the droplet interface (d) and the moving particle surface (p), respectively. The free surface of the droplet is taken as the zero in the droplet level-set function 0> and the advection equation (Eq. (3)) of the droplet level-set function (particle level-set function (4>p) is defined as the signed distance from any given point x in the Eulerian system to the particle surface ... [Pg.50]

As the particle is in motion, at every time step, a series of grid points near the particle surface are first identified to measure the vapor layer. As shown in Fig. 22, these grids points are in a small band around the surface and can be outside the surface (...,/— 1, i, i + 1, i + 2,...) or inside the surface (..., t— 1, t, i + 1, t + 2,...). If the droplet surface is represented by points (..., Pt i, Pt, Pi+1,...) in Fig. 22 and point Pt is located on the mesh line between the mesh knots i and t, the vapor-layer thickness at P can be calculated based on the values of the level-set function at i and f defined as (dji,Pjl) and (d,i < p/) respectively. Since the level-set function is the signed distance from the computation knots to the droplet and particle surface after the redistance process is performed, the vapor-layer thickness (<5f) at Pt can be estimated by... [Pg.54]

Fig. 11.5. Diagram illustrating the components of an ESI source. A solution from a pump or the eluent from an HPLC is introduced through a narrow gage needle (approximately 150 pm i.d.). The voltage differential (4-5 kV) between the needle and the counter electrode causes the solution to form a fine spray of small charged droplets. At elevated flow rates (greater than a few pl/min up to 1 ml/min), the formation of droplets is assisted by a high velocity flow of N2 (pneumatically assisted ESI). Once formed, the droplets diminish in size due to evaporative processes and droplet fission resulting from coulombic repulsion (the so-called coulombic explosions ). The preformed ions in the droplets remain after complete evaporation of the solvent or are ejected from the droplet surface (ion evaporation) by the same forces of coulombic repulsion that cause droplet fission. The ions are transformed into the vacuum envelope of the instrument and to the mass analyzer(s) through the heated transfer tube, one or more skimmers and a series of lenses. Fig. 11.5. Diagram illustrating the components of an ESI source. A solution from a pump or the eluent from an HPLC is introduced through a narrow gage needle (approximately 150 pm i.d.). The voltage differential (4-5 kV) between the needle and the counter electrode causes the solution to form a fine spray of small charged droplets. At elevated flow rates (greater than a few pl/min up to 1 ml/min), the formation of droplets is assisted by a high velocity flow of N2 (pneumatically assisted ESI). Once formed, the droplets diminish in size due to evaporative processes and droplet fission resulting from coulombic repulsion (the so-called coulombic explosions ). The preformed ions in the droplets remain after complete evaporation of the solvent or are ejected from the droplet surface (ion evaporation) by the same forces of coulombic repulsion that cause droplet fission. The ions are transformed into the vacuum envelope of the instrument and to the mass analyzer(s) through the heated transfer tube, one or more skimmers and a series of lenses.
Some protuberances may be created on a droplet surface due to local deformations. Under favorable conditions, these bulges detach from the droplet and disintegrate into smaller droplets. [Pg.171]

Subjected to steady acceleration, a droplet is flattened gradually. When a critical relative velocity is reached, the flattened droplet is blown out into a hollow bag anchored to a nearly circular rim which contains at least 70% of the mass of the original droplet. Surface tension force is sufficient to allow the bag shape to develop. The bag, with a concave surface to the gas flow, is stretched and swept off in the downstream direction. The rupture of the bag produces a cloud of very fine droplets presumably via a perforation mode, and the rim breaks up into relatively larger droplets, although all droplets are at least an order of magnitude smaller than the initial droplet size. This is referred to as bag breakup (Fig. 3.10)T2861... [Pg.172]

Interestingly, the shape of the wake is similar to that developed behind a hypersonic blunt body where the flow converges to form a narrow recompression neck region several body diameters downstream of the rear stagnation point due to strong lateral pressure gradients. The liquid material, that is continuously stripped off from the droplet surface, is accelerated almost instantaneously to the particle velocity behind the wave front and follows the streamline pattern of the wake, suggesting that the droplet is reduced to a fine micromist. [Pg.174]

In a supersonic gas flow, the convective heat transfer coefficient is not only a function of the Reynolds and Prandtl numbers, but also depends on the droplet surface temperature and the Mach number (compressibility of gas). 154 156 However, the effects of the surface temperature and the Mach number may be substantially eliminated if all properties are evaluated at a film temperature defined in Ref. 623. Thus, the convective heat transfer coefficient may still be estimated using the experimental correlation proposed by Ranz and Marshall 505 with appropriate modifications to account for various effects such as turbulence,[587] droplet oscillation and distortion,[5851 and droplet vaporization and mass transfer. 555 It has been demonstrated 1561 that using the modified Newton s law of cooling and evaluating the heat transfer coefficient at the film temperature allow numerical calculations of droplet cooling and solidification histories in both subsonic and supersonic gas flows in the spray. [Pg.372]


See other pages where Surface droplet is mentioned: [Pg.538]    [Pg.49]    [Pg.209]    [Pg.393]    [Pg.117]    [Pg.493]    [Pg.504]    [Pg.32]    [Pg.235]    [Pg.263]    [Pg.227]    [Pg.228]    [Pg.2]    [Pg.6]    [Pg.8]    [Pg.34]    [Pg.40]    [Pg.41]    [Pg.42]    [Pg.42]    [Pg.42]    [Pg.48]    [Pg.272]    [Pg.723]    [Pg.170]    [Pg.227]    [Pg.233]    [Pg.300]    [Pg.310]    [Pg.369]    [Pg.372]   
See also in sourсe #XX -- [ Pg.64 , Pg.66 ]




SEARCH



Controlling Surface Wetting by Electrochemical Reactions of Monolayers and Applications for Droplet Manipulation

Droplet Deformation and Evaporation on a Hot Surface

Droplet Transport by Surface Acoustic Waves

Droplet breakup surface tension

Droplet formation surface tension effects

Droplet size surface tension

Droplet size surface tension effect

Droplet/leaf surface interface

Droplets on surface

Droplets, liquid surface

Interaction, Spreading and Splashing of Multiple Droplets on a Surface

Mean droplet diameter surface

Potential surface, charged emulsion droplet

Relative humidity above water-droplet surface

Sessile Droplet Deformation on a Surface

Sessile droplet surface configuration change

Simulation of Saturated Droplet Impact on Flat Surface in the Leidenfrost Regime

Surface Configuration Change Under a Sessile Droplet of Water

Surface area of droplets

Surface droplet pressure method

© 2024 chempedia.info