Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Drop breakup

Keywords Atomization Chemical reactions Craiservation equations Constitutive equations Drop breakup Drop deformation Drop collisions Evaporation LES Newtonian fluids RANS Spray modeling Spray PDF Stochastic discrete particle method Source terms Turbulence... [Pg.383]

In many types of contactors, such as stirred tanks, rotary agitated columns, and pulsed columns, mechanical energy is appHed externally in order to reduce the drop si2e far below the values estimated from equations 36 and 37 and thereby increase the rate of mass transfer. The theory of local isotropic turbulence can be appHed to the breakup of a large drop into smaller ones (66), resulting in an expression of the form... [Pg.69]

The nonuniformity of drop dispersions can often be important in extraction. This nonuniformity can lead to axial variation of holdup in a column even though the flow rates and other conditions are held constant. For example, there is a tendency for the smallest drops to remain in a column longer than the larger ones, and thereby to accumulate and lead to a locali2ed increase in holdup. This phenomenon has been studied in reciprocating-plate columns (74). In the process of drop breakup, extremely small secondary drops are often formed (64). These drops, which may be only a few micrometers in diameter, can become entrained in the continuous phase when leaving the contactor. Entrainment can occur weU below the flooding point. [Pg.69]

Coalescence and Phase Separation. Coalescence between adjacent drops and between drops and contactor internals is important for two reasons. It usually plays a part, in combination with breakup, in determining the equiHbrium drop si2e in a dispersion, and it can therefore affect holdup and flooding in a countercurrent extraction column. Secondly, it is an essential step in the disengagement of the phases and the control of entrainment after extraction has been completed. [Pg.69]

Atomization. A gas or Hquid may be dispersed into another Hquid by the action of shearing or turbulent impact forces that are present in the flow field. The steady-state drop si2e represents a balance between the fluid forces tending to dismpt the drop and the forces of interfacial tension tending to oppose distortion and breakup. When the flow field is laminar the abiHty to disperse is strongly affected by the ratio of viscosities of the two phases. Dispersion, in the sense of droplet formation, does not occur when the viscosity of the dispersed phase significantly exceeds that of the dispersing medium (13). [Pg.100]

When an impeller is rotated in an agitated tank containing two immiscible Hquids, two processes take place. One consists of breakup of dispersed drops due to shearing near the impeller, and the other is coalescence of drops as they move to low shear zones. The drop size distribution (DSD) is decided when the two competing processes are in balance. During the transition, the DSD curve shifts to the left with time, as shown in Figure 18. Time required to reach the equiHbrium DSD depends on system properties and can sometimes be longer than the process time. [Pg.429]

Theoretical possible heat removal per pound of air circulated in a cooling tower depends on the temperature and moisture content of air. An indication of the moisture content of the air is its wet-bulb temperature. Ideally, then, the wet-bulb temperature is the lowest theoretical temperature to which the water can be cooled. Practically, the cold-water temperature approaches but does not equal the air wet-bulb temperature in a coohng tower this is so because it is impossible to contact all the water with fresh air as the water drops through the wetted fill surface to the basin. The magnitude of approach to the wet-bulb temperature is dependent on tower design. Important factors are air-to-water contact time, amount of fill surface, and breakup of water into droplets. In actual practice, cooling towers are seldom designed for approaches closer than 2.8°C (5°F). [Pg.1162]

Breakup of a. meet of liquid (Ih/elocity) . This governs drop size in most hydraulic spray nozzles. [Pg.1408]

Liquid-Column Breakup Because of increased pressure at points of reduced diameter, the liquid column is inherently unstable. As a result, it breaks into small drops with no external energy input. Ideally, it forms a series of uniform drops with the size of the drops set by the fastest-growing wave. This yields a dominant droplet diameter... [Pg.1408]

Isolated Droplet Breakup—in a Velocity Field Much effort has focused on defining the conditions under which an isolated drop will break in a velocity field. The criterion for the largest stable drop... [Pg.1408]

FIG. 14-85 a) Idealized jet breakup suggesting uniform drop diameter and... [Pg.1408]

Further differences from hydraulic nozzles (controlled by sheet and ligament breakup) are the stronger increase in drop size with increasing surface tension and decreasing gas density. [Pg.1412]

Inteifacial tension. A high interfacial tension promotes rapid coalescence and generally requires high mechanical agitation to produce small droplets. A low interracial tension allows drop breakup with low agitation intensity but also leads to slow coalescence rates. Interfacial tension usually decreases as solubility and solute concentration increase and falls to zero at the plait point (Fig. 15-10). [Pg.1460]

Information on the coefficients is relatively undeveloped. They are evidently strongly influenced by rate of drop coalescence and breakup, presence of surface-active agents, interfacial turbulence (Marangoni effect), drop-size distribution, and the like, none of which can be effectively evaluated at this time. [Pg.1466]

Coalescence The coalescence of droplets can occur whenever two or more droplets collide and remain in contact long enough for the continuous-phase film to become so thin that a hole develops and allows the liquid to become one body. A clean system with a high interfacial tension will generally coalesce quite rapidly. Particulates and polymeric films tend to accumulate at droplet surfaces and reduce the rate of coalescence. This can lead to the ouildup of a rag layer at the liquid-hquid interface in an extractor. Rapid drop breakup and rapid coalescence can significantly enhance the rate of mass transfer between phases. [Pg.1470]

Pipe Lines The principal interest here will be for flow in which one hquid is dispersed in another as they flow cocurrently through a pipe (stratified flow produces too little interfacial area for use in hquid extraction or chemical reaction between liquids). Drop size of dispersed phase, if initially very fine at high concentrations, increases as the distance downstream increases, owing to coalescence [see Holland, loc. cit. Ward and Knudsen, Am. In.st. Chem. Eng. J., 13, 356 (1967)] or if initially large, decreases by breakup in regions of high shear [Sleicher, ibid., 8, 471 (1962) Chem. Eng. ScL, 20, 57 (1965)]. The maximum drop size is given by (Sleicher, loc. cit.)... [Pg.1638]

FIG. 27-24 Idealized process of drop formation by breakup of a liquid sheet. After Domhrowski and Johns, Chem. Eng. Sci. 18 203, 1963. )... [Pg.2388]

Another type of crossflow cooling tower is the wet-dry tower, which consists of a normal crossflow tower over which a few air coils are placed. The hot water is first cooled by an air cooled heat exchanger and then drops to the wet cooling tower where more cooling is obtained by the evaporative mechanism. Figures 5 and 6 provide examples. In contrast, deck-filled towers contain tiers of splash bars or decks to aid in the breakup of water drops to increase the total water surface and, subsequently, the evaporation rate. [Pg.72]

Concerning a liquid droplet deformation and drop breakup in a two-phase model flow, in particular the Newtonian drop development in Newtonian median, results of most investigations [16,21,22] may be generalized in a plot of the Weber number W,. against the vi.scos-ity ratio 8 (Fig. 9). For a simple shear flow (rotational shear flow), a U-shaped curve with a minimum corresponding to 6 = 1 is found, and for an uniaxial exten-tional flow (irrotational shear flow), a slightly decreased curve below the U-shaped curve appears. In the following text, the U-shaped curve will be called the Taylor-limit [16]. [Pg.690]

When solid particles are subject to noncatalytic reactions, the effects of the reaction on individual particles are derived and then the results are averaged to determine overall properties. The general techniques for this averaging are called population balance methods. They are important in mass transfer operations such as crystallization, drop coagulation, and drop breakup. Chapter 15 uses these methods to analyze the distribution of residence times in flow systems. The following example shows how the methods can be applied to a collection of solid particles undergoing a consumptive surface reaction. [Pg.422]

Mechanical compatibilization is accomplished by reducing the size of the dispersed phase. The latter is determined by the balance between drop breakup and coalescence process, which in turn is governed by the type and severity of the stress, interfacial tension between the two phases, and the rheological characteristics of the components [9]. The need to reduce potential energy initiates the agglomeration process, which is less severe if the interfacial tension is small. Addition... [Pg.299]

For fluid particles that continuously coalesce and breakup and where the bubble size distributions have local variations, there is still no generally accepted model available and the existing models are contradictory [20]. A population density model is required to describe the changing bubble and drop size. Usually, it is sufficient to simulate a handful of sizes or use some quadrature model, for example, direct quadrature method of moments (DQMOM) to decrease the number of variables. [Pg.342]

Almost all flows in chemical reactors are turbulent and traditionally turbulence is seen as random fluctuations in velocity. A better view is to recognize the structure of turbulence. The large turbulent eddies are about the size of the width of the impeller blades in a stirred tank reactor and about 1/10 of the pipe diameter in pipe flows. These large turbulent eddies have a lifetime of some tens of milliseconds. Use of averaged turbulent properties is only valid for linear processes while all nonlinear phenomena are sensitive to the details in the process. Mixing coupled with fast chemical reactions, coalescence and breakup of bubbles and drops, and nucleation in crystallization is a phenomenon that is affected by the turbulent structure. Either a resolution of the turbulent fluctuations or some measure of the distribution of the turbulent properties is required in order to obtain accurate predictions. [Pg.342]

Bubble and drop breakup is mainly due to shearing in turbulent eddies or in velocity gradients close to the walls. Figure 15.11 shows the breakup of a bubble, and Figure 15.12 shows the breakup of a drop in turbulent flow. The mechanism for breakup in these small surface-tension-dominated fluid particles is initially very similar. They are deformed until the aspect ratio is about 3. The turbulent fluctuations in the flow affect the particles, and at some point one end becomes... [Pg.347]


See other pages where Drop breakup is mentioned: [Pg.543]    [Pg.543]    [Pg.9]    [Pg.31]    [Pg.148]    [Pg.100]    [Pg.100]    [Pg.430]    [Pg.430]    [Pg.416]    [Pg.511]    [Pg.473]    [Pg.647]    [Pg.1408]    [Pg.1408]    [Pg.1410]    [Pg.1413]    [Pg.1484]    [Pg.1639]    [Pg.70]    [Pg.586]    [Pg.690]    [Pg.691]    [Pg.388]    [Pg.309]    [Pg.338]    [Pg.347]   
See also in sourсe #XX -- [ Pg.137 ]

See also in sourсe #XX -- [ Pg.137 ]




SEARCH



Breakup

Breakup Mechanism and Daughter Drop Production in Laminar Flow

Breakup drop size

Breakup of Drops and Bubbles

Breakup of drops

Capillary flows drop breakup

Capillary number , drop breakup

Cascade atomization and drop breakup

Deformation and Breakup of Viscoelastic Drops

Drop breakup Weber number

Drop breakup coalescing system

Drop breakup deformation

Drop breakup dilute

Drop breakup energy dissipation

Drop breakup interfacial tension

Drop breakup laminar flow

Drop breakup mechanisms

Drop breakup models

Drop breakup shear

Drop breakup turbulence

Drop breakup viscosity ratio

Dynamic drop breakup model

Impeller drop breakup

Turbulent mixing drop breakup

© 2024 chempedia.info