Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

MALDI, quantitation

Relative MALDI quantitation has been shown for lipids (14) and small molecules in the MALDI linear ion trap. Good precision in MALDI quantitation requires normalizing for an internal standard. MS and MS improve precision by providing specificity (15). Including a deuterated internal standard in the isolation window for MS has also been shown to improve precision (16). [Pg.448]

Sanders (14) has exploited the strong and selective coordination of phosphine donor groups to Ru(II) to construct hetero-dimetallic porphyrin dimers (17, Fig. 5). An alkyne-phosphine moiety introduced on the periphery of a free base or metalloporphyrin (M = Zn or Ni) spontaneously coordinates to a Ru(II)(CO) porphyrin when the two porphyrins are mixed in a 1 1 ratio. Coordination is characterized by a downfield shift of the 31P resonance (A<531P = 19 ppm). There is no evidence of self-coordination of the zinc porphyrin at 10 6 m in toluene, there is no shift in the Soret band in the UV-Vis absorption spectrum. The Ni-Ru dimer was observed by MALDI-TOF mass spectrometry. Heating the Ru(II)CO porphyrin with 2 equivalents of the phosphine porphyrins led to quantitative formation of trimeric assemblies. [Pg.224]

Table 6.18 lists the main characteristics of FD-MS. FD is a superior ionisation technique for quantitative analysis, as there are no matrix effects as in LSIMS or MALDI which might suppress the generation of ions from certain additives. However, the technique has some serious drawbacks. The primary difficulty is that FD produces only short-lived, highly variable currents of analyte ions. These analyte ion currents are also very... [Pg.374]

In direct insertion techniques, reproducibility is the main obstacle in developing a reliable analytical technique. One of the many variables to take into account is sample shape. A compact sample with minimal surface area is ideal [64]. Direct mass-spectrometric characterisation in the direct insertion probe is not very quantitative, and, even under optimised conditions, mass discrimination in the analysis of polydisperse polymers and specific oligomer discrimination may occur. For nonvolatile additives that do not evaporate up to 350 °C, direct quantitative analysis by thermal desorption is not possible (e.g. Hostanox 03, MW 794). Good quantitation is also prevented by contamination of the ion source by pyrolysis products of the polymeric matrix. For polymer-based calibration standards, the homogeneity of the samples is of great importance. Hyphenated techniques such as LC-ESI-ToFMS and LC-MALDI-ToFMS have been developed for polymer analyses in which the reliable quantitative features of LC are combined with the identification power and structure analysis of MS. [Pg.409]

The technique offers advantages over alternative techniques (e.g. preparative SEC fractionation followed by IR). SEC-FTIR is much more suitable to quantitation of additives than SEC-MALDI-ToFMS. Combining SEC-FTIR with SEC-MALDI offers a more powerful tool than when either is used alone. [Pg.528]

Principles and Characteristics Problems connected with sample preparation, ionisation and detector efficiency can lead to errors in the quantitation of mass averages and MWD in the case of ESI-MS and MALDI-MS. Coupling of SEC with MS makes it possible to overcome these difficulties. SEC-MS has developed since the early 1990s. Two methods are currently outstanding on-line SEC-ESI-MS (QMS or FTMS) and semi on-line SEC-MALDI-ToFMS [709],... [Pg.529]

For PMMA/additive dissolutions, it was not possible to identify any additive characteristic mass peaks, either by direct laser desorption or with matrix-assistance (dithranol, DHBA or sinapinic acid, 4-hydroxy-3,5-dimethoxy-cinnamic acid). This has again been ascribed to very strong interaction between PMMA and additives, which suppresses desorption of additive molecules. Also, partial depolymerisation of pho-tolytically labile PMMA by laser irradiation may play a role, which leads to saturation of the detector by PMMA fragment-ions and disappearance of additive mass peaks below noise level. Meyer-Dulheuer [55] has also reported MALDI-TOFMS analysis of a coating/2-ethylhexyldiphenylphosphate sample. Quantitative determination of the additives by means of MALDI-ToFMS proved impossible. Possibly the development of reproducible (automated) sample handling procedures or thin films might overcome this problem. [Pg.708]

It is concluded that MALDI-ToFMS is a suitable method for direct analysis of low-MW additives in complex polymeric materials (in dissolution), in particular as a rapid screening technique (within 0.5 h). However, in order to turn this method into a general tool for identification and quantitation, considerably more work needs to be done. Identification of additives in polymeric matrices by means of MALDI-ToFMS would greatly benefit from reference libraries of additives contained in such matrices. This is not unlike the situation observed for ToF-SIMS. [Pg.709]

Both absolute quantitation and relative quantitation of species in mixtures is of interest in some circumstances. Quantitation in a 5-minute analysis can be achieved by addition of an internal standard, ideally the target microorganism grown in special media to incorporate heavy isotopes92-95 and determination of the relative peak heights of pairs of proteins from the analyte and the standard. Isotope-labeled proteins or peptides, selected to match proteins or peptides characteristic of target microorganisms, can also serve as internal standards for isotope ratio measurement. The addition of unmatched proteins or peptides is less reliable for either ESI or MALDI measurements because of unpredictable suppression in the variable mixture. [Pg.269]

Dondi, F., Bassi, A., Cavazzini, A., Pietrogrande, M.C. (1998). A quantitative theory of the statistical degree of peak overlapping in chromatography. Anal. Chem. 70, 766. Eckerskom, C., Strupat, K., Schleuder, D., Hochstrasser, D.F., Sanchez, J.-C., Lottspeich, F., Hillenkamp, F. (1997). Analysis of proteins by direct-scanning infrared-MALDI mass spectrometry after 2D-PAGE separation and electroblotting. Anal. Chem. 69, 2888. Expasy,http //www.expasy.ch. [Pg.89]

In a separate study, a protocol for Matrix-assisted laser desorption-ionization (MALDI) imaging mass spectrometry (IMS) has been proposed.18 This IMS technique provides a new approach to visualize spatial distribution of thousands of molecular species, including peptides, proteins, and their metabolites in two- or three-dimensional levels. This approach may also provide a straightforward method of determining the tissue distribution of multiple peptides or proteins in a quantitative manner.18 Chu et al.19 reported a nondestructive molecular extraction method to obtain proteins from a single FFPE or frozen tissue section, without destroying the tissue morphology, such... [Pg.394]

Biomolecular MS and in particular MALDI-TOF-MS (see Sections 2.1.22 and 2.2.1) permit the routine analysis of oligonucleotides up to 70-mers, intact nucleic acids, and the direct detection of DNA products with no primer labels with an increase in analysis speed and mass accuracy especially in contrast to traditional DNA separation techniques such as slab gels or capillary electrophoresis. Applications focus on the characterization of single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs). Precise and accurate gene expression measurements show relative and absolute numbers of target molecules determined independently of the number of PCR cycles. DNA methylation can be studied quantitatively. [Pg.246]

The AE blend Brij 35 with the general formula CnH2n+i 0(CH2CH20)mH was analysed by MALDI MS prior to use for biochemistry research. Separation results of thin-layer (TLC) and RP-LC of these surfactants were compared [30]. Brij 35, as a mixture of Ci2 and C14 homologues (to = 15-39), was detected qualitatively as [M + Na]+ and [M + K]+ ions and quantitatively after TLC and RP-LC separation. [Pg.264]

The first step in biopharmaceutical development is the selection of a clone in a specific cell line. Whole-mass analysis, if possible, is a fairly simple and powerful tool at this stage to verify the successful expression and translation of the desired protein. VanAdrichem et al.65 described the use of MALDI MS to monitor protein expression in several mammalian cell lines like CHO DXB11, CHO SSF3, and hybridomas. Quantitative MALDI-TOF MS measurements of an IgG antibody and insulin during large-scale production in hybridoma cells were comparable to affinity chromatography results. [Pg.235]

Because of their asymmetry, CDs exhibit chiral effects towards chiral molecules under FAB" and MALDl conditions. The main ambiguity of these studies remains regarding the environment in which chiral recognition occurs, whether in the bulk matrix, in the selvedge vaporization region, or in the gas phase. Besides, neither MALDI nor EAB ensure attainment of purely kinetic or equilibrium conditions so as that quantitative interpretation of the MS patterns in terms of relative stabihty of diastereomeric host/guest intermediates or transition stmctures... [Pg.218]

Murgasova, R. Hercules, D.M. Quantitative Characterization of a Polysty-rene/Poly(a-methylstyrene) Blend by MALDI-MS and Size-Exclusion Chromatography. Anal. Chem. 2003, 75, 3744-3750. [Pg.439]

The growth step procedures for the cycloaddition reaction are very simple. Combination of an ethynyl-substituted dendrimer and an excess of the cyclo-pentadienone in a refluxing solvent such as o-xylene, diphenylether, or methyl-naphthalene (with b.p. higher than 130 °C) typically results in quantitative conversion within 24 h. The refluxing of the solvent is necessary to accelerate the elimination of the carbon monoxide in the cycloaddition. The purity of the resulting compounds was checked by MALDI-TOF mass spectrometry which showed quantitative reaction, facilitating work-up. By repeated precipitation in methanol, the pure product can be isolated as white amorphous powders in yields higher than 90%. [Pg.6]

The use of MALDI for the analysis of small molecules was recently reported. Particularly attractive is the coupling of a MALDI source with a triple quadrupole mass analyzer for quantitative analysis in the selected reaction monitoring (SRM) mode due to very high analysis speed. [Pg.23]


See other pages where MALDI, quantitation is mentioned: [Pg.389]    [Pg.390]    [Pg.391]    [Pg.393]    [Pg.395]    [Pg.397]    [Pg.398]    [Pg.389]    [Pg.390]    [Pg.391]    [Pg.393]    [Pg.395]    [Pg.397]    [Pg.398]    [Pg.416]    [Pg.264]    [Pg.707]    [Pg.705]    [Pg.162]    [Pg.174]    [Pg.26]    [Pg.419]    [Pg.167]    [Pg.1026]    [Pg.333]    [Pg.334]    [Pg.29]    [Pg.37]    [Pg.270]    [Pg.292]    [Pg.959]    [Pg.221]    [Pg.235]    [Pg.421]    [Pg.43]    [Pg.254]    [Pg.289]   
See also in sourсe #XX -- [ Pg.650 ]




SEARCH



MALDI

Quantitative MALDI

© 2024 chempedia.info