Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lysine polypeptide 5-form

Polypeptides form various secondary structures (a-heUx, 3-sheet, etc.), depending on solution pHs. We have investigated end-anchored poly(L-glutamic acid) andpoly(L-lysine) in various secondary structures [11,29,35,36], using the analytical method for the steric force... [Pg.10]

Patwardhan, S.V., Mukherjee, N. and Clarson, S.J. (2001) The use of poly-L-lysine to form novel silica morphologies and the role of polypeptides in biosilicification. Journal of Inorganic and Organometcdlic Polymers, 11, 193-198. [Pg.105]

Patwardhan, S. V Mukherjee, N. Clarson, S. J., The Use of Poly-L-Lysine to Form Novel Silica Morphologies and the Role of Polypeptides in Biosilicifica-tion. J. Inorg. Organomet. Polym. 2001,11,193-198. [Pg.255]

Bioresorbable poly(ester urethanes) have been developed by reacting lysine diisocyanate (LDI) with polyester diols or triols based on D,L-lactide, caprolac-tone, and other copolymers [45]. In these systems, aliphatic polyesters such as PLGA or PCL form the soft segments and the polypeptides form the hard segments [46]. A resorbable elastomeric poly(ester urethane) called Degrapol is available commercially. It is currently being used to develop porous scaffolds for tissue engineering applications. [Pg.34]

The side groups of the amino acids vary markedly in size and chemical nature and play an important role in the chemical reactions of the fiber. For example, the basic groups (hisidine, arginine, and lysine) can attract acid (anionic) dyes, and in addition the side chains of lysine and hisidine are important sites for the attachment of reactive dyes. The sulfur-containing amino acid cysteine plays a very important role, because almost all of the cysteine residues in the fiber are linked in pairs to form cystine residues, which provide a disulfide bridge —S—S— between different polypeptide molecules or between segments of the same molecules as shown ... [Pg.343]

Factor XIII. Factor XIII circulates in the blood as a zymogen composed of two pairs of different polypeptide chains designated A and B. Inert Factor XIII has a molecular weight of 350,000 daltons and is converted to its active transglutaminase form in the presence of thrombin and calcium. Activated Factor XIII, Xllla, induces an irreversible amide exchange reaction between the y-glutamine and S-lysine side chains of adjacent fibrin... [Pg.174]

Task (3) is more difficult. It uses a series of reagents each of which is capable of breaking only certain amide bonds. One of these reagents is the enzyme trypsin, which breaks only those bonds formed by the carboxyl groups in arginine and lysine. It would break the polypeptide... [Pg.626]

Historically, after the development of oligopeptide-based vesicles, several groups developed and characterized vesicles using polypeptide hybrid systems consisting of polypeptide and synthetic polymer blocks [17-19]. Soon thereafter, vesicles formed entirely from polypeptides, such as poly(L-lysine)-h-poly(L-leucine) and poly(L-lysine)-h-poly(L-glutamate), were developed [20, 21]. This review will focus on recent developments in the formation of vesicles composed of polypeptide hybrid or polypeptide systems, as well as the potential promise of these systems as effective dmg delivery vehicles. A specific example of a polypeptide-based vesicle is shown in Fig. 1, where the hydrophobic segment is a-helical and the hydrophilic segment is a random coil. [Pg.120]

Fig. 1 Vesicle construct formed from poly(L-lysine)-i)-poly(L-leucme) polypeptides where the poly(L-leucine) block corresponds to the a-helical hydrophobic segments and the poly (L-lysine) block corresponds to the random coil hydrophilic segments. Note that this is one specific example and not all vesicle constructs have a-helical and random coil blocks. Moreover, the amphiphilic copolymer can be comprised of either a pure block copolypeptide or a macromolecule consisting of a polypeptide and another type of polymer. Adapted from [20] with permission. Copyright 2010 American Chemical Society... Fig. 1 Vesicle construct formed from poly(L-lysine)-i)-poly(L-leucme) polypeptides where the poly(L-leucine) block corresponds to the a-helical hydrophobic segments and the poly (L-lysine) block corresponds to the random coil hydrophilic segments. Note that this is one specific example and not all vesicle constructs have a-helical and random coil blocks. Moreover, the amphiphilic copolymer can be comprised of either a pure block copolypeptide or a macromolecule consisting of a polypeptide and another type of polymer. Adapted from [20] with permission. Copyright 2010 American Chemical Society...
Chapman et al. [131] reported the synthesis of poly(ethylene oxide) (PEO) supported dendritic f-BOC-poly(a, c-L-lysines). These dendritic polymers termed as hydramphiphiles formed foams possessing good temporal stability in aqueous solution. Scrimin et al. [132] synthesized a three-directional polypeptide having uses in membrane permeability modulation. Decapeptide fragments were linked to TREN [tris(2-aminoethyl)amine] core. [Pg.57]

The relevance of such a diastereomer discrimination to the transport of chiral molecules, such as pharmaceuticals or biochemicals, through hydrophobic barriers, such as cell membranes, is obvious. Furthermore, since poly(DL-lysine) followed the same general pattern of behavior displayed by the other three samples, the observed surface-pressure changes probably were not due to helicalization of the polypeptide. Whereas poly(L-lysine) and poly(D-lysine) form helices with opposite screw sense, the random copolymer poly(DL-lysine) is to a large extent prevented from forming helices. [Pg.250]

Figure 13.5 Formation of lysinoalanine nucleophilic additions of the e-amino group of the protein-bound lysine to the double bond of DHA residue (a) causes crosslinking of the polypeptide chain (b) lysinoalanine (c) is formed after hydrolysis. Figure 13.5 Formation of lysinoalanine nucleophilic additions of the e-amino group of the protein-bound lysine to the double bond of DHA residue (a) causes crosslinking of the polypeptide chain (b) lysinoalanine (c) is formed after hydrolysis.
In both cases the top layer of these layered polyelectrolyte films contains many ion sites that can bind redox ions by ion exchange vdth the electrolyte solution. Homo polypeptides such as poly(L-lysine) and poly(L-glutamic add) have been employed to form layered polyelectrolyte films with Fe(CN)6 " electrostatically adsorbed onto ammonium sites in poly(lysine) [45]. Modified electrodes with polyelectrolytes mono-layers have also been deposited using the Langmuir-Blodgett technique [46-48]. [Pg.61]

Histidine residues are efficient nucleophiles in aqueous solution at pH 7, much more so than lysines, and this is the basis for the site-selective functionalization of lysine residues in folded polypeptides and proteins [24, 25]. p-Nitrophenyl esters react with His residues in a two-step reaction to form an acyl intermediate under the release of p-nitrophenol followed by the reaction of the intermediate with the most potent nucleophile in solution to form the reaction product. In aqueous solution the reaction product is the carboxylic acid since the hydroxide ion is the most efficient nucleophile at pH 7. If there is an alcohol present the reaction product will be an ester and the overall reaction is a transesterification reaction. [Pg.61]

The binding of pyridoxal 5 -phosphate (vitamin Be) to enzymes has been modelled using homo- and co-polypeptides containing L-lysine as a source of reactive amino groups. This has now been extended to reaction of pyridoxal with polyallylamine, with the polymer acting as a control that cannot provide amido -CO- or -NH- functions to stabilize the Schiff base products, as occurs in enzymes and polypeptides. Rate constants for the formation and hydrolysis of the imines have been measured and interpreted in terms of formation of the carbinolamine (in its neutral or zwitterionic form). [Pg.5]

This zinc-dependent enzyme [EC 3.4.17.1], a member of the peptidase family M14, catalyzes the hydrolysis of peptide bonds at the C-terminus of polypeptides. Little hydrolytic action occurs if the C-terminal amino acid is aspartate, glutamate, arginine, lysine, or proline. Car-boxypeptidase A is formed from a precursor protein, procarboxypeptidase A. [Pg.112]


See other pages where Lysine polypeptide 5-form is mentioned: [Pg.123]    [Pg.100]    [Pg.52]    [Pg.234]    [Pg.146]    [Pg.385]    [Pg.173]    [Pg.172]    [Pg.174]    [Pg.341]    [Pg.232]    [Pg.123]    [Pg.125]    [Pg.128]    [Pg.535]    [Pg.537]    [Pg.537]    [Pg.1004]    [Pg.139]    [Pg.98]    [Pg.133]    [Pg.13]    [Pg.157]    [Pg.139]    [Pg.313]    [Pg.177]    [Pg.89]    [Pg.20]    [Pg.140]    [Pg.250]    [Pg.83]    [Pg.129]    [Pg.129]    [Pg.201]   
See also in sourсe #XX -- [ Pg.481 ]




SEARCH



Lysine polypeptide

© 2024 chempedia.info