Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lysine polypeptide

The side groups of the amino acids vary markedly in size and chemical nature and play an important role in the chemical reactions of the fiber. For example, the basic groups (hisidine, arginine, and lysine) can attract acid (anionic) dyes, and in addition the side chains of lysine and hisidine are important sites for the attachment of reactive dyes. The sulfur-containing amino acid cysteine plays a very important role, because almost all of the cysteine residues in the fiber are linked in pairs to form cystine residues, which provide a disulfide bridge —S—S— between different polypeptide molecules or between segments of the same molecules as shown ... [Pg.343]

Factor XIII. Factor XIII circulates in the blood as a zymogen composed of two pairs of different polypeptide chains designated A and B. Inert Factor XIII has a molecular weight of 350,000 daltons and is converted to its active transglutaminase form in the presence of thrombin and calcium. Activated Factor XIII, Xllla, induces an irreversible amide exchange reaction between the y-glutamine and S-lysine side chains of adjacent fibrin... [Pg.174]

ENZYMATIC ANALYSIS WITH CARBOXYPEPTIDASES. Carboxypeptidases are enzymes that cleave amino acid residues from the C-termini of polypeptides in a successive fashion. Four carboxypeptidases are in general use A, B, C, and Y. Carboxypeptidase A (from bovine pancreas) works well in hydrolyzing the C-terminal peptide bond of all residues except proline, arginine, and lysine. The analogous enzyme from hog pancreas, carboxypeptidase B, is effective only when Arg or Lys are the C-terminal residues. Thus, a mixture of carboxypeptidases A and B liberates any C-terminal amino acid except proline. Carboxypeptidase C from citrus leaves and carboxypeptidase Y from yeast act on any C-terminal residue. Because the nature of the amino acid residue at the end often determines the rate at which it is cleaved and because these enzymes remove residues successively, care must be taken in interpreting results. Carboxypeptidase Y cleavage has been adapted to an automated protocol analogous to that used in Edman sequenators. [Pg.134]

FIGURE 5.20 Trypsin is a proteolytic enzyme, or protease, that specifically cleaves only those peptide bonds in which arginine or lysine contributes the carbonyl function. The products of the reaction are a mixture of peptide fragments with C-terminal Arg or Lys residues and a single peptide derived from the polypeptide s C-terminal end. [Pg.135]

Task (3) is more difficult. It uses a series of reagents each of which is capable of breaking only certain amide bonds. One of these reagents is the enzyme trypsin, which breaks only those bonds formed by the carboxyl groups in arginine and lysine. It would break the polypeptide... [Pg.626]

The proteolytic digestion of j6-lactoglobulin was carried out with trypsin which, as indicated in Table 5.4 above, is expected to cleave the polypeptide backbone at the carboxy-terminus side of lysine (K) and arginine (R). On this basis, and from the known sequence of the protein, nineteen peptide fragments would be expected, as shown in Table 5.7. Only 13 components were detected after HPLC separation and, of these, ten were chosen for further study, as shown in Table 5.8. [Pg.214]

Wang J, Gibson MI, Barbey R, Xiao SJ, Klok HA (2009) Nonfouling polypeptide brushes via surface-initiated polymerization of N-epsilon-oligo(ethylene glycol)succinate-L-lysine N-carboxyanhydride. Macromol Rapid Commun 30 845-850... [Pg.25]

Fig. 20 Modular resilin-like polypeptide containing domains conferring elastomeric properties, heparin molecule interaction, cell adhesion, and matrix metalloproteinase (MMP) proteolysis. Lysine residues are encoded periodically to permit crosslinking... Fig. 20 Modular resilin-like polypeptide containing domains conferring elastomeric properties, heparin molecule interaction, cell adhesion, and matrix metalloproteinase (MMP) proteolysis. Lysine residues are encoded periodically to permit crosslinking...
Historically, after the development of oligopeptide-based vesicles, several groups developed and characterized vesicles using polypeptide hybrid systems consisting of polypeptide and synthetic polymer blocks [17-19]. Soon thereafter, vesicles formed entirely from polypeptides, such as poly(L-lysine)-h-poly(L-leucine) and poly(L-lysine)-h-poly(L-glutamate), were developed [20, 21]. This review will focus on recent developments in the formation of vesicles composed of polypeptide hybrid or polypeptide systems, as well as the potential promise of these systems as effective dmg delivery vehicles. A specific example of a polypeptide-based vesicle is shown in Fig. 1, where the hydrophobic segment is a-helical and the hydrophilic segment is a random coil. [Pg.120]

Fig. 1 Vesicle construct formed from poly(L-lysine)-i)-poly(L-leucme) polypeptides where the poly(L-leucine) block corresponds to the a-helical hydrophobic segments and the poly (L-lysine) block corresponds to the random coil hydrophilic segments. Note that this is one specific example and not all vesicle constructs have a-helical and random coil blocks. Moreover, the amphiphilic copolymer can be comprised of either a pure block copolypeptide or a macromolecule consisting of a polypeptide and another type of polymer. Adapted from [20] with permission. Copyright 2010 American Chemical Society... Fig. 1 Vesicle construct formed from poly(L-lysine)-i)-poly(L-leucme) polypeptides where the poly(L-leucine) block corresponds to the a-helical hydrophobic segments and the poly (L-lysine) block corresponds to the random coil hydrophilic segments. Note that this is one specific example and not all vesicle constructs have a-helical and random coil blocks. Moreover, the amphiphilic copolymer can be comprised of either a pure block copolypeptide or a macromolecule consisting of a polypeptide and another type of polymer. Adapted from [20] with permission. Copyright 2010 American Chemical Society...
The Jing group investigated their poly(L-lysine)-6-poly(L-phenylalanine) vesicles for the development of synthetic blood, since PEG-lipid vesicles were previously used to encapsulate hemoglobin to protect it from oxidation and to increase circulation time. They extended this concept and demonstrated that functional hemoglobin could be encapsulated into their vesicles. The same polypeptide material was also used to complex DNA, which caused the vesicles to lose their... [Pg.130]

Polypeptides form various secondary structures (a-heUx, 3-sheet, etc.), depending on solution pHs. We have investigated end-anchored poly(L-glutamic acid) andpoly(L-lysine) in various secondary structures [11,29,35,36], using the analytical method for the steric force... [Pg.10]


See other pages where Lysine polypeptide is mentioned: [Pg.138]    [Pg.1205]    [Pg.166]    [Pg.19]    [Pg.138]    [Pg.1205]    [Pg.166]    [Pg.19]    [Pg.551]    [Pg.385]    [Pg.21]    [Pg.108]    [Pg.173]    [Pg.161]    [Pg.172]    [Pg.113]    [Pg.114]    [Pg.174]    [Pg.182]    [Pg.341]    [Pg.630]    [Pg.193]    [Pg.125]    [Pg.214]    [Pg.232]    [Pg.211]    [Pg.9]    [Pg.15]    [Pg.15]    [Pg.16]    [Pg.16]    [Pg.17]    [Pg.18]    [Pg.107]    [Pg.123]    [Pg.123]    [Pg.125]    [Pg.128]    [Pg.138]    [Pg.142]   


SEARCH



Glutamic acid lysine-, polypeptide

Lysine polypeptide 5-form

Lysine polypeptide conformational study

Lysine polypeptide helical content

Lysine polypeptide helix-coil transition

Polypeptides poly-L-lysine

© 2024 chempedia.info