Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rotor losses

A very important feature of solid-state technology is energy conservation in the process of speed control. The slip losses that appear in the rotor circuit are now totally eliminated. With the application of this technology, we can change the characteristics of the motor so that the voltage and frequency are set at values just sufficient to meet the speed and power requirements of the load. The power drawn from the mains is completely utilized in doing useful work rather than appearing as stator losses, rotor slip losses or external resistance losses of the rotor circuit. [Pg.134]

Advanced two- and three-dimensional computer analysis methods are used today in the analyses of all critical components to verify aerodynamic, heat transfer, and mechanical performance. Additionally, the reduction of leakage paths in the compressor, as well as in the gas turbine expander, results in further plant efficiency improvements. At the compressor inlet, an advanced inlet flow design improves efficiency by reducing pressure loss. Rotor air cooler heat utilization and adt anccd blade and vane cooling arc also used. [Pg.1174]

Power for each Hquid and the soHd phase must be added to get Pp. P, the soHds process power, = T -AN for scroU decanters, where = conveyor torque and AN = differential speed between bowl and conveyor. Pp is the friction power, ie, loss in bearings, seals, gears, belts, and fluid couplings. P, the windage power, = K and fi = viscosity of surrounding gas p = density of gas D = rotor outside diameter N = rpm and K = shape... [Pg.403]

The effective friction loss, or gas-phase contacting power, is easily determined by direct measurements. However, the liquid-phase contacting power, supplied from the stream of scrubbing liquid, and the mechanical contacting power, supplied by a mechanically driven rotor, are not direc tly measurable the theoretical power inputs can be estimated, but the portions of these quantities effectively converted to contac ting power can only be inferred from comparison with gas-phase contacting power. Such data as are available indicate that the contributions or contacting power from different sources are directly additive in their relation to scrubber performance. [Pg.1592]

Efficiency for a turboexpander is calculated on the basis of isentropic rather than polytropic expansion even though its efficiency is not 100 percent. This is done because the losses are largely introduced at the discharge of the machine in the form of seal leakages and disk friction which heats the gas leaking past the seals and in exducer losses. (The exducer acts to convert the axial-velocity energy from the rotor to pressure energy.)... [Pg.2521]

This expansion of a condensing vapor is highly desirable thermodynamically, but the hquid must not bombard and erode the rotor blades, and, in particular, it must not accumulate in the rotor, since that would cause efficiency loss. [Pg.2522]

Size, rotating speed, and efficiency correlate well with the available isentropic head, the volumetric flow at discharge, and the expansion ratio across the turboexpander. The head and the volumetric flow and rotating speed are correlated by the specific speed. Figure 29-49 shows the efficiency at various specific speeds for various sizes of rotor. This figure presumes the expansion ratio to be less than 4 1. Above 4 1, certain supersonic losses come into the picture and there is an additional correction on efficiency, as shown in Fig. 29-50. [Pg.2524]

Efficiency at various specific speeds for various sizes of rotor. 29-50 Loss of efficiency as a function of the pressure ratio. [Pg.2524]

Analysis of soils is an important task in the environmental researches. Reliability of ICP-MS results of soil analysis mainly depends on chemical sampling. Recently microwave systems are widely used for preparation of different samples. Influence of microwave radiation on sample ensures a complete decomposition of sample, greatly increases the mineralization, and allows possible losses of volatile elements to be minimized. In the given study to intensify decomposition of soils we applied the microwave sample preparation system MULTIWAVE (Anton Paar, Austria and Perkin-Elmer, USA) equipped with rotor from 6 autoclaves with TEM reaction chambers of 50 ml volume. [Pg.287]

This is why an induction motor ceases to run at synchronous speed. The rotor, however, adjusts its speed, N such that the induced e.m.f. in the rotor conductors is Just enough to produce a torque that can counter-balance the mechanical load and the rotor losses, including frictional losses. The difference in the two speeds is known as slip. S, in r.p.m. and is expressed in terms of percentage of synchronous speed, i.e. [Pg.7]

The difference in the two is the electric power loss in the rotor circuit and is known as slip loss, i.e. [Pg.8]

The performance of a motor is greatly influenced by a voltage unbalance in the supply system. It reduces its output and torque and results in a higher slip and rotor loss. This subject is covered in more detail in Section 12.2(v). For likely deratings, refer to Figure 12.1. Asystem with an unbalance of up to 1 % or so calls for no derating, whereas one having an unbalance of more than 5% is not recommended for an industrial application, because of a... [Pg.9]

During a run, if the supply voltage to a motor terminal drops to 85% of its rated value, then the full load torque of the motor will decrease to 72.25%. Since the load and its torque requirement will remain the same, the motor will star to drop speed until the torque available on its speed-torque curve has a value as high as 100/0.7225 or 138.4% of T to sustain this situation. The motor will now operate at a higher slip, increasing the rotor slip losses also in the same proportion. See equation (1.9) and Figure 1.7. [Pg.11]

Windage losses A result of friction between the moving parts of the motor and the movement of air, caused by the cooling fan, rotation of the rotor, etc. [Pg.17]

For a lower range of motors, say up to a frame size of 355, the silicon steel normally used for stator and rotor core laminations is universally 0.5-0.65 mm thick and possesses a high content of silicon for achieving better electromagnetic properties. The average content of silicon in such sheets is of the order of 1.3-0.8% and a core loss of roughly 2.3-3.6 W/kg, determined al a flux density of I W[ym and a frequency of 50 Hz. For medium-sized motors, in frames 400-710, silicon steel with a still better content of silicon, of the order of 1.3-1.8% having lower losses of the order of 2.3-1.8 W/kg is prefeired, with a thickness of lamination of 0.5-0.35 mm. [Pg.18]

BB will determine the locked rotor torque and power loss while the rotor is locked. [Pg.19]

Rotor copper loss = 3 V( /j/W, watts Motor output = 3 V, Ph watts AB is known as the output line, since the output is measured above this. [Pg.19]

The higher the full load slip, the higher will be the rotor losses and rotor heat. This is clear from the circle diagram and also from equation (1.9). An attempt to limit the start-up current by increasing the slip and the rotor resistance in a squirrel cage motor may thus jeopardize the motor s performance. The selection of starling current and rotor resistance is thus a compromise to achieve optimum performance. [Pg.20]

But where accurate speed control is the process requirement, static controllers, termed slip recovery systems (Section 6.16.3) are recommended, which in addition to exercising extremely accurate speed control, also conserve slip losses. Static drives are discussed in Chapter 6. Below we will describe a procedure to determine the value of resistance, its steps and switching and control schemes for these steps for a rotor resistance starter. [Pg.83]

Shaded portion indicates power loss in the rotor circuit Figure 5.8 Variation in torque and output with speed... [Pg.94]

Let us consider the simple equivalent motor circuit diagram as shown earlier in Figure 1.15. The no-load component of the current, / , that feeds the no-load losses of the machine contains a magnetizing component, produces the required magnetic field, (p, , in the stator and the rotor circuits, and develops the rotor torque so that... [Pg.104]

The inverter may be a current source inverter, rather than a voltage source inverter (.Section 6.9.4) since it will be the rotor current that is required to be vtiried (equation (1.7)) to control the speed of a wound rotor motor, and this can be independently varied through the control of the rotor current. The speed and torque of the motor can be smoothly and steplessly controlled by this method, without any power loss. Figures 6.47 and 6.48 illustrate a typical slip recovery system and its control scheme, respectively. [Pg.141]


See other pages where Rotor losses is mentioned: [Pg.321]    [Pg.235]    [Pg.403]    [Pg.403]    [Pg.460]    [Pg.937]    [Pg.1112]    [Pg.2310]    [Pg.2486]    [Pg.2487]    [Pg.2511]    [Pg.2522]    [Pg.2523]    [Pg.12]    [Pg.13]    [Pg.14]    [Pg.37]    [Pg.38]    [Pg.38]    [Pg.39]    [Pg.39]    [Pg.40]    [Pg.83]    [Pg.83]    [Pg.90]    [Pg.101]    [Pg.135]    [Pg.140]    [Pg.141]   


SEARCH



Performance rotor losses

Rotor losses clearance loss

© 2024 chempedia.info