Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquids Overview

Ionic liquids are a special class of molten salts. It is well accepted that any liquid electrolyte composed entirely of ions is denominated a molten salt or a fused salt [Pg.229]

By far the most used and investigated ILs are those based on 1,3-dialkylimida- [Pg.230]

Not surprisingly, these materials are very popular and enjoy a plethora of applications in various domains of the physical sciences, and an impressive number of spedahzed reviews and books has appeared dealing with their synthesis, physicochemical properties and appHcations in synthesis, catalysis and separation processes [12-26]. This section does not intend to be comprehensive on the vast area of synthesis and appHcations of ILs rather it will attempt to provide a critical update of the basic principles and latest developments on the structure and properties of ILs (mainly those based on the 1,3-dialkylimidazolium cation), and their [Pg.230]

Preparation and Some Physico-Chemical Properties of 1,3-Dialkylimidazolium ILs [Pg.231]

As can be easily observed from the data presented in Table 3.5-3 the I Ls based on 1,3-dialkylimidazolium cations possess relatively low viscosity (as low as 26 mPa s) and high density (usually between 1.2 and 1.5 g cm ). They are liquid over a large range of temperatures (down to -80 C) have a high thermal stability (starting to decompose at temperatures over 400°C) and display a large electrochemical window (up to 7 V). [Pg.232]


P-P bonds, 67-68 Palladium catalysis in ionic liquids, overview, 256-257... [Pg.288]

Zhang XP, Zhang XC, Dong HF, et al Carbon capture with ionic liquids overview and progress. Energy Environ Sci 5 6668-6681, 2012. [Pg.161]

This chapter concludes our discussion of applications of surface chemistry with the possible exception of some of the materials on heterogeneous catalysis in Chapter XVIII. The subjects touched on here are a continuation of Chapter IV on surface films on liquid substrates. There has been an explosion of research in this subject area, and, again, we are limited to providing just an overview of the more fundamental topics. [Pg.537]

K. A. Epstein and co-workers, "Fluorinated Ferroelectric Liquid Crystals Overview and Synthesis," Eleventh Winter Fluorine Conference, St. Petersburg, Fla., 1993. [Pg.316]

Several reported chemical systems of gas-liquid precipitation are first reviewed from the viewpoints of both experimental study and industrial application. The characteristic feature of gas-liquid mass transfer in terms of its effects on the crystallization process is then discussed theoretically together with a summary of experimental results. The secondary processes of particle agglomeration and disruption are then modelled and discussed in respect of the effect of reactor fluid dynamics. Finally, different types of gas-liquid contacting reactor and their respective design considerations are overviewed for application to controlled precipitate particle formation. [Pg.232]

This text is intended to provide an overview of methods for estimating the characteristics of vapor cloud explosions, flash flies, and boiling-liquid-expanding-vapor explosions (BLEVEs) for practicing engineers. The volume summarizes and evaluates all the current information, identifies areas where information is lacking, and describes current and planned research in the field. [Pg.1]

M. Car eri, A. Mangia and M. Musci, Overview of the applications of liquid cliromatog-raphy-mass spectrometry interfacing systems in food analysis naturally occurring substances in food , 7. Chromatogr. 794 263-297 (1998). [Pg.134]

Armstrong and Jin [15] reported the separation of several hydrophobic isomers (including (l-ferrocenylethyl)thiophenol, 1 -benzylnornicotine, mephenytoin and disopyramide) by cyclodextrins as chiral selectors. A wide variety of crown ethers have been synthesized for application in enantioselective liquid membrane separation, such as binaphthyl-, biphenanthryl-, helicene-, tetrahydrofuran and cyclohex-anediol-based crown ethers [16-20]. Brice and Pirkle [7] give a comprehensive overview of the characteristics and performance of the various crown ethers used as chiral selectors in liquid membrane separation. [Pg.131]

The future price of ionic liquids will also reflect intellectual property considerations. While the currently most frequently requested ionic liquids, the tetrafluoroborate and hexafluorophosphate ionic liquids, are all patent-free, many recently developed, new ionic liquid systems are protected by state of matter patents. Table 2.2-2 gives an overview of some examples published after 1999. [Pg.31]

Very recently, Olivier-Bourbigou and Magna [15], Sheldon [16], and Gordon [17] have published three excellent reviews presenting a comprehensive overview of current work in transition metal catalysis involving ionic liquids, with slightly different emphases. All three update previously published reviews on the same topic, by Wasserscheid and Keim [18], Welton [19] and Seddon and Holbrey [20]. [Pg.216]

Kunesh [126] presents tm overview of the basis for selecting rsuidom packing for a column application. In first deciding between a trayed tower or a packed one, a comparative performance design and its mechanical interpretation should be completed, considering pressure drop, capacity limitations, performance efficiencies (HETP), material/heat balances for each alternate. For one example relating to differences in liquid distribution performance, see Reference 126. [Pg.276]

The influence of interfaeial potentials (diffusion or liquid junction potentials) established at the boundary between two different electrolyte solutions (based on e.g. aqueous and nonaqueous solvents) has been investigated frequently, for a thorough overview see Jakuszewski and Woszezak [68Jak2]. Concerning the usage of absolute and international Volt see preceding chapter. [Pg.55]

The maintenance of a connection to experiment is essential in that reliability is only measurable against experimental results. However, in practice, the computational cost of the most reliable conventional quantum chemical methods has tended to preclude their application to the large, low-symmetry molecules which form liquid crystals. There have however, been several recent steps forward in this area and here we will review some of these newest developments in predictive computer simulation of intramolecular properties of liquid crystals. In the next section we begin with a brief overview of important molecular properties which are the focus of much current computational effort and highlight some specific examples of cases where the molecular electronic origin of macroscopic properties is well established. [Pg.6]

In this section we aim to introduce some of the main theoretical ideas which underlie the strategies for modelling liquid crystal molecules. It is clear that there are a very wide range of methods available and we will not attempt to be comprehensive. Instead, we will begin with a brief overview of traditional semi-empirical approaches and then progress to concentrate on treating fully predictive parameter-free calculations of molecular electronic structure and properties in some depth. [Pg.15]

To date, the crystal structures of more than 200 mesogenic compounds are known. In this review, we wish to present a general overview of the crystal structures of mesogenic compounds up to the end of 1997. Unfortunately, it is not possible to consider the crystal structure determinations of carbohydrate liquid crystals [13, 14], metallomesogens [15-18], phasmid and biforked mesogens [19-22], perfluorinated mesogenic compounds [23-27], benzoic acids [6, 28-31], cinnamic acids [7, 32, 33], dicarboxylic acids [34, 35], cinnamate compounds [8, 36-40], and discotic liquid crystals [41-43] due to the lack of space. [Pg.141]

F.E.C. Culick. Combustion instabilities in liquid-fueled propulsion systems, an overview. AGARD Conference Proceedings Combustion Instabilities in Liquid Fuelled Propulsion Systems, 450, pp. 1.1-1.73. NATO, 1988. [Pg.79]

F.E.C. Culick and V. Yang. Overview of combustion instabilities in liquid-propellant rocket engines. Liquid Rocket Engine Combustion Instability. Progress in Astronautics and Aeronautics, Vol. 169, pp. 3-37, Chapter 1, AIAA, 1995. [Pg.92]

Catalytic hydrogenation is typically carried out in slurry reactors, where finely dispersed catalyst particles (<100 (tm) are immersed in a dispersion of gas and liquid. It has, however, been demonstrated that continuous operation is possible, either by using trickle bed [24] or monoHth technologies [37]. Elevated pressures and temperatures are needed to have a high enough reaction rate. On the other hand, too high a temperature impairs the selectivity of the desired product, as has been demonstrated by Kuusisto et al. [23]. An overview of some feasible processes and catalysts is shown in Table 8.1. [Pg.176]

The use of high performance liquid chromatography (HPLC) for the study of paralytic shellfish poisoning (PSP) has facilitated a greater understanding of the biochemistry and chemistry of the toxins involved. HPLC enables the determination of the type and quantity of the PSP toxins present in biological samples. An overview of the HPLC method is presented that outlines the conditions for both separation and detection of the PSP toxins. Examples of the use of the HPLC method in toxin research are reviewed, including its use in the determination of the enzymatic conversion of the toxins and studies on the movement of the toxins up the marine food chain. [Pg.66]

Apart from obvious features such as laminarity, there are speculations that flows in micro channels exhibit a behavior deviating from predictions of macroscopic continuum theory. In the case of gas flows, these deviations, manifesting themselves as, e.g., velocity slip at solid surfaces, are comparatively well understood (for an overview, see [130]). However, for liquid flows on a length scale above 1 pm, there is no clear theoretical foundation for deviations from continuum behavior. Nevertheless, various unexpected phenomena such as friction factors deviating from the continuum prediction [131-133] have been reported. A more detailed discussion of this still unsettled matter is given in Section 2.2. At any rate, one has to be careful here since it may be that measurements in small systems lack precision, essentially because of the incompatibility of analysis in a confined space and with large measuring equipment... [Pg.49]


See other pages where Liquids Overview is mentioned: [Pg.229]    [Pg.229]    [Pg.232]    [Pg.2319]    [Pg.2346]    [Pg.238]    [Pg.279]    [Pg.1041]    [Pg.334]    [Pg.60]    [Pg.373]    [Pg.82]    [Pg.250]    [Pg.251]    [Pg.303]    [Pg.375]    [Pg.47]    [Pg.200]    [Pg.545]    [Pg.97]    [Pg.126]    [Pg.127]    [Pg.137]    [Pg.142]    [Pg.332]    [Pg.502]   


SEARCH



© 2024 chempedia.info