Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear copolymer, property

It is apparent from items (l)-(3) above that linear copolymers-even those with the same proportions of different kinds of repeat units-can be very different in structure and properties. In classifying a copolymer as random, alternating, or block, it should be realized that we are describing the average character of the molecule accidental variations from the basic patterns may be present. In Chap. 7 we shall see how an experimental investigation of the sequence of repeat units in a copolymer is a valuable tool for understanding copolymerization reactions. This type of information along with other details of structure are collectively known as the microstructure of a polymer. [Pg.12]

This closure property is also inherent to a set of differential equations for arbitrary sequences Uk in macromolecules of linear copolymers as well as for analogous fragments in branched polymers. Hence, in principle, the kinetic method enables the determination of statistical characteristics of the chemical structure of noncyclic polymers, provided the Flory principle holds for all the chemical reactions involved in their synthesis. It is essential here that the Flory principle is meant not in its original version but in the extended one [2]. Hence under mathematical modeling the employment of the kinetic models of macro-molecular reactions where the violation of ideality is connected only with the short-range effects will not create new fundamental problems as compared with ideal models. [Pg.173]

Figure 2 Property distributions in a linear copolymer composition distribution, molecular weight distribution and sequence length distribution of poly styrene-co-n-butyl methacrylate). (Styrene units are represented by "A and n-butyl methacrylate units by B".)... Figure 2 Property distributions in a linear copolymer composition distribution, molecular weight distribution and sequence length distribution of poly styrene-co-n-butyl methacrylate). (Styrene units are represented by "A and n-butyl methacrylate units by B".)...
Attenpts to Analyze Complex Polymers Using SEC Detector Technology. For linear copolymers, multiple detectors and, more recently, diode array UV/vis spectrophotometers have been used in attempts to overccxne the above analysis problems. The basic idea is to provide more than one detector response so that the polymer concentration and the number of properties will together equal the number of detector responses (Figure 4). This provides the same number of equations as the number of unitnowns (5,6). [Pg.62]

There have been many studies directed at using adsorption and re versed-phase HPLC to separate copolymers by composition (1.-3) interacting problems associated with these approaches ares o The presence of one property distribution interferes with separation on the basis of the other. For example, in adsorption chromatography, the degree of adsorption can be affected by both the molecular weight and by the composition of the molecule. For a linear copolymer, adequate fractionation requires that the ccmposltlon differences completely dominate. [Pg.62]

Rubber-toughened polystyrene composites were obtained similarly by polymerising the dispersed phase of a styrene/SBS solution o/w HIPE [171], or a styrene/MMA/(SBS or butyl methacrylate) o/w HIPE [172], The latter materials were found to be tougher, however, all polymer composites had mechanical properties comparable to bulk materials. Other rubber composite materials have been prepared from PVC and poly(butyl methacrylate) (PBMA) [173], via three routes a) blending partially polymerised o/w HIPEs of vi-nylidene chloride (VDC) and BMA, followed by complete polymerisation b) employing a solution of PBMA in VDC as the dispersed phase, with subsequent polymerisation and c) blending partially polymerised VDC HIPE with BMA monomer, then polymerisation. All materials obtained possessed mixtures of both homopolymers plus some copolymer, and had better mechanical properties than the linear copolymers. The third method was found to produce the best material. [Pg.205]

Theory for block copolymer rheology is still in its infancy. There are no models that can predict the rheological behaviour of a block copolymer from microscopic parameters. Fredrickson and Helfand (1988) considered fluctuation effects on the low frequency linear viscoelastic properties of block copolymers in the disordered melt near the ODT. They found that long-wavelength transverse momentum fluctuations couple only to compositional order parameter fluctua-... [Pg.105]

Liquid crystals with a large molecular mass are able to form a glassy state with mesomorphic behaviour. Yitzchaik and coworkers38 report about a new class of copolymers with non-linear optical properties, and a monomeric representative with a glassy metastable... [Pg.437]

Along with the isomerism of linear copolymers due to various distributions of different monomeric units in their chains, other kinds of isomerisms are known. They can appear even in homopolymer molecules, provided several fashions exist for a monomer to enter in the polymer chain in the course of the synthesis. So, asymmetric monomeric units can be coupled in macromolecules according to "head-to-tail" or "head-to-head"—"tail-to-tail" type of arrangement. Apart from such a constitutional isomerism, stereoisomerism can be also inherent to some of the polymers. Isomers can sometimes substantially vary in performance properties that should be taken into account when choosing the kinetic model. The principal types of such an account are analogous to those considered in the foregoing. The only distinction consists in more extended definition of possible states of a stochastic process of conventional movement along a polymer chain. [Pg.171]

When the statistical moments of the distribution of macromolecules in size and composition (SC distribution) are supposed to be found rather than the distribution itself, the problem is substantially simplified. The fact is that for the processes of synthesis of polymers describable by the ideal kinetic model, the set of the statistical moments is always closed. The same closure property is peculiar to a set of differential equations for the probability of arbitrary sequences t//j in linear copolymers and analogous fragments in branched polymers. Therefore, the kinetic method permits finding any statistical characteristics of loopless polymers, provided the Flory principle works for all chemical reactions of their synthesis. This assertion rests on the fact that linear and branched polymers being formed under the applicability of the ideal kinetic model are Markovian and Gordonian polymers, respectively. [Pg.180]

Physical properties are related to ester-segment structure and concentration in thermoplastic polyether-ester elastomers prepared hy melt transesterification of poly(tetra-methylene ether) glycol with various diols and aromatic diesters. Diols used were 1,4-benzenedimethanol, 1,4-cyclo-hexanedimethanol, and the linear, aliphatic a,m-diols from ethylene glycol to 1,10-decane-diol. Esters used were terephthalate, isophthalate, 4,4 -biphenyldicarboxylate, 2,6-naphthalenedicarboxylate, and m-terphenyl-4,4"-dicarboxyl-ate. Ester-segment structure was found to affect many copolymer properties including ease of synthesis, molecular weight obtained, crystallization rate, elastic recovery, and tensile and tear strengths. [Pg.133]

These materials can be considered linear copolymers of ethylene and propylene or precisely methyl-branched polyethylene. In addition, copolymerizations of the methyl-containing monomers with 1,9-decadierie yield polymers with lower propylene content [50]. These materials are of great interest to the polyolefin community, especially in the physical understanding of the effects of branching on physical properties. Polyethylenes with a variety of main chain functionality have also been synthesized and analyzed [51-54]. [Pg.203]

Generally PSAs are well known for their very viscoelastic behavior, which is necessary for them to function properly. It was therefore important to characterize first the effect of the presence of diblocks on the linear viscoelastic behavior. Since a comprehensive study on the effect of the triblock/diblock ratio on the linear viscoelastic properties of block copolymer blends has recently been reported [46], we characterized the linear viscoelastic properties of our PSA only at room temperature and down to frequencies of about 0.01 Hz. Within this frequency range all adhesives have a very similar behavior in terms of elasticity, as can be seen in Fig. 22.10. The differences appear at low frequency, a regime where the free iso-prene end of the diblock chain is able to relax. This relaxation process is analogous to the relaxation of an arm of a star-like polymer [47], and causes G to drop to a lower plateau modulus, the level of which is only controlled by the density of triblock chains actually bridging two styrene domains [46]. [Pg.348]

A summary of the importance of these reported conclusions would certainly emphasize extreme care that should be observed in measuring either ultimate (adhesive failure) or small displacement (linear viscoelastic) properties of block copolymers which have been extruded or molded. [Pg.309]

When polymers are composed of at least two different repeating units, they are named copolymers. The order of the repeating units has to be specified, as different orders result in different properties. When two repeating units A and B are present in a linear copolymer, the order can be random. Such a copolymer is simply named poly(A-co-B) or sometimes poly(A-stat-B). [Pg.13]

Non-linear viscoelastic properties were observed for fumed silica-poly(vinyl acetate) (PVAc) composites, with varying PVAc molar mass and including a PVAc copolymer with vinyl alcohol. Dynamic mechanical moduli were measured at low strains and found to decrease with strain depending on surface treatment of the silica. The loss modulus decreased significantly with filler surface treatment and more so with lower molar mass polymer. Copolymers with vinyl alcohol presumably increased interactions with silica and decreased non-linearity. Percolation network formation or agglomeration by silica were less important than silica-polymer interactions. Silica-polymer interactions were proposed to form trapped entanglements. The reinforcement and nonlinear viscoelastic characteristics of PVAc and its vinyl alcohol copolymer were similar to observations of the Payne effect in filled elastomers, characteristic of conformations and constraints of macromolecules. ... [Pg.618]

Kr61, P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and apphcations of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science, 2007,52, 915-1015. [Pg.44]

As part of a larger project on styrene-butadiene-styrene (SBS) copolymers (14), in which a variety of thermal and physical characteristics were studied, we report here our investigation of linear dynamic properties for which— by definition—the microstructure is unaltered during testing. A variety of sample casting solvents is employed. [Pg.600]

Alginates. Alginates are linear copolymers of a-L-guluronate (G) and a-D-mannuronate (M) (Fig. 29). They are also called polyuronides and are extracted from brown algae. Their gelling properties derive from the cooperative binding of divalent cations on the G blocks in the egg-box model (similar to that proposed in LM pectins). [Pg.6574]

Most of the publications on polycations for DNA condensation possessing a steric stabilizer deal with the influence of the polymer architecture on the properties of the polyplexes (physico-chemical characteristics and transfection efficiency). Two types of architectures are mainly studied linear copolymers with block and/or graft (eventually brush) architectures (Scheme 17). The steric stabilizers most commonly used are based on ethylene glycol or contain hydroxyl groups such as hydroxyethyl methacrylate or sugars (only a few examples are presented here because sugar-based polycations are out of the scope of this review). [Pg.154]


See other pages where Linear copolymer, property is mentioned: [Pg.431]    [Pg.49]    [Pg.90]    [Pg.171]    [Pg.371]    [Pg.59]    [Pg.60]    [Pg.222]    [Pg.431]    [Pg.56]    [Pg.4]    [Pg.298]    [Pg.115]    [Pg.93]    [Pg.45]    [Pg.2687]    [Pg.1]    [Pg.169]    [Pg.163]    [Pg.341]    [Pg.192]    [Pg.35]    [Pg.151]    [Pg.1698]    [Pg.325]    [Pg.259]    [Pg.1489]    [Pg.3620]    [Pg.5410]   


SEARCH



Linear copolymer

Linear copolymer, property distributions

© 2024 chempedia.info