Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Limits of chemistry

The importance of validation has been generally acknowledged, and most QSAR models in the literature are validated either by cross validation or external test sets [13,46]. Model validation for classification models is typically specified by statistical quality measures of overall quality such as sensitivity, specificity, false positives, false negatives, and overall prediction. Unfortunately, it is often impossible to specify accuracy and prediction confidence for individual unknown chemicals, specifically those unknown chemicals with structures requiring the model to extend to, or beyond, the limits of chemistry space defined by the training set. [Pg.158]

Before the widespread availability of instrumental methods the major approach to structure determination relied on a battery of chemical reactions and tests The response of an unknown substance to various reagents and procedures provided a body of data from which the structure could be deduced Some of these procedures are still used to supple ment the information obtained by instrumental methods To better understand the scope and limitations of these tests a brief survey of the chemical reactions of carbohydrates is m order In many cases these reactions are simply applications of chemistry you have already learned Certain of the transformations however are unique to carbohydrates... [Pg.1052]

Software tools for computational chemistry are often based on empirical information. To use these tools, you need to understand how the technique is implemented and the nature of the database used to parameterize the method. You use this knowledge to determine the most appropriate tools for specific investigations and to define the limits of confidence in results. [Pg.7]

As shown in Figure 4.12c, the limit of identification is selected such that there is an equal probability of type 1 and type 2 errors. The American Chemical Society s Committee on Environmental Analytical Chemistry recommends the limit of quantitation, (Sa)loq> which is defined as ... [Pg.96]

Positive-Tone Photoresists based on Dissolution Inhibition by Diazonaphthoquinones. The intrinsic limitations of bis-azide—cycHzed mbber resist systems led the semiconductor industry to shift to a class of imaging materials based on diazonaphthoquinone (DNQ) photosensitizers. Both the chemistry and the imaging mechanism of these resists (Fig. 10) differ in fundamental ways from those described thus far (23). The DNQ acts as a dissolution inhibitor for the matrix resin, a low molecular weight condensation product of formaldehyde and cresol isomers known as novolac (24). The phenoHc stmcture renders the novolac polymer weakly acidic, and readily soluble in aqueous alkaline solutions. In admixture with an appropriate DNQ the polymer s dissolution rate is sharply decreased. Photolysis causes the DNQ to undergo a multistep reaction sequence, ultimately forming a base-soluble carboxyHc acid which does not inhibit film dissolution. Immersion of a pattemwise-exposed film of the resist in an aqueous solution of hydroxide ion leads to rapid dissolution of the exposed areas and only very slow dissolution of unexposed regions. In contrast with crosslinking resists, the film solubiHty is controUed by chemical and polarity differences rather than molecular size. [Pg.118]

Immunoassays. Immunoassays (qv) maybe simply defined as analytical techniques that use antibodies or antibody-related reagents for selective deterrnination of sample components (94). These make up some of the most powerflil and widespread techniques used in clinical chemistry. The main advantages of immunoassays are high selectivity, low limits of detection, and adaptibiUty for use in detecting most compounds of clinical interest. Because of their high selectivity, immunoassays can often be used even for complex samples such as urine or blood, with Httle or no sample preparation. [Pg.247]

A multiresidue analytical method based on sohd-phase extraction enrichment combined with ce has been reported to isolate, recover, and quantitate three sulfonylurea herbicides (chlorsulfuron, chlorimuron, and metasulfuron) from soil samples (105). Optimi2ation for ce separation was achieved using an overlapping resolution map scheme. The recovery of each herbicide was >80% and the limit of detection was 10 ppb (see Soil chemistry of pesticides). [Pg.248]

Biopolymers are employed in many immunological techniques, including the analysis of food, clinical samples, pesticides, and in other areas of analytical chemistry. Immunoassays (qv) are specific, sensitive, relatively easy to perform, and usually inexpensive. For repetitive analyses, immunoassays compare very favorably with many conventional methods in terms of both sensitivity and limits of detection. [Pg.100]

Several requirements must be met in developing a stmcture. Not only must elementary analysis and other physical measurements be consistent, but limitations of stmctural organic chemistry and stereochemistry must also be satisfied. Mathematical expressions have been developed to test the consistency of any given set of parameters used to describe the molecular stmcture of coal and analyses of this type have been reported (4,6,19,20,29,30). [Pg.218]

Analytical instruments play an increasingly important role in modern analytical chemistry. The trend is not limited in chemistry but in all phases of natural science and technology, as one easily can watch in rapid progresses in molecular biology, nano-materials technology, and the related bio-medical reseai ch. Instiaimental developments can now even be a determining factor in the advancement of science itself. [Pg.23]

Frequently a piece of equipment is used in different processes during its lifecycle. This could result in process conditions that exceed the safe operating limits of the equipment. Equipment inspection may provide a poor prediction of the equipment s useful life and reliability, due to the change of material handled or change in process chemistry over the life of equipment. Batch operations are also characterized by frequent start-up and shut-down of equipment. This can lead to accelerated equipment aging and may lead to equipment failure. This chapter presents issues and concerns related to the safe design, operation, and maintenance of various pieces of equipment in batch reaction systems, and provides potential solutions. [Pg.6]

Obtaining the aqueous solution to analyze is often a challenge in materials analysis. Thin films usually can be dissolved by acids without dissolving the underlying substrate, however sometimes this is difficult. A film can also be oxidized and the oxide dissolved. Temperatures involved in this procedure are sometimes quite elevated so care must be taken to maintain sample integrity. The chemistry of the sample must be kept in mind so that the limits of the analysis are known. [Pg.627]

We have considered all the known types of organic derivatives of silicon and we see how few is their number in comparison with the purely organic compounds. Since the few which are known are very limited in their reactions, the prospect of any immediate and important advance in this section of chemistry does not seem very hopeful. ... [Pg.815]

The present occasion seems opportune to direct attention to the fact that one of the most familiar, most leadily procurable and most cheaply produced of all oiganic materials is placed beyond the reach of many students by the heavy duty levied upon it. May I, in the name of teachers of organic chemistry, appeal to the Board of Inland Revenue, on behalf of scientific and technical education, to provide institutions for higher education in science with a limited quantity of pure alcohol free of duty, thereby placing schools of chemistry in this country in the same position as those on the Continent ... [Pg.360]

Chapter 6, Selecting an Appropriate Theoretical Method, discusses the model chemistry concept introduced in Chapter 1 in detail. It covers the strengths, computational cost and limitations of a variety of popular methods, beginning with semi-empirical models and continuing through Hartree-Fock, Density Functional Theory, and electron correlation methods. [Pg.317]

The material in this section is divided into three parts. The first subsection deals with the general characteristics of chemical substances. The second subsection is concerned with the chemistry of petroleum it contains a brief review of the nature, composition, and chemical constituents of crude oil and natural gases. The final subsection touches upon selected topics in physical chemistry, including ideal gas behavior, the phase rule and its applications, physical properties of pure substances, ideal solution behavior in binary and multicomponent systems, standard heats of reaction, and combustion of fuels. Examples are provided to illustrate fundamental ideas and principles. Nevertheless, the reader is urged to refer to the recommended bibliography [47-52] or other standard textbooks to obtain a clearer understanding of the subject material. Topics not covered here owing to limitations of space may be readily found in appropriate technical literature. [Pg.297]

One of the surest wavs to learn organic chemistry is to work synthesis problems. The ability to plan a successful multistep synthesis of a complex molecule requires a working knowledge of the uses and limitations of a great many organic reactions. Not only must you know which reactions to use, you must also know when to use them because the order in which reactions are carried out is often critical to the success of the overall scheme. [Pg.581]


See other pages where Limits of chemistry is mentioned: [Pg.652]    [Pg.38]    [Pg.679]    [Pg.323]    [Pg.232]    [Pg.652]    [Pg.38]    [Pg.679]    [Pg.323]    [Pg.232]    [Pg.60]    [Pg.792]    [Pg.2764]    [Pg.23]    [Pg.4]    [Pg.12]    [Pg.36]    [Pg.137]    [Pg.233]    [Pg.116]    [Pg.260]    [Pg.391]    [Pg.321]    [Pg.523]    [Pg.44]    [Pg.8]    [Pg.352]    [Pg.110]    [Pg.179]    [Pg.324]    [Pg.234]    [Pg.924]    [Pg.442]    [Pg.112]    [Pg.77]    [Pg.189]    [Pg.150]    [Pg.2]   
See also in sourсe #XX -- [ Pg.232 ]




SEARCH



© 2024 chempedia.info