Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lamp, The

If the components are colourless, their separation can often be followed by working in a quartz (or special glass) tube which is placed in the light of a mercury lamp. The separate zones are then often revealed by their fluorescence. [Pg.49]

The cost of rare-earth phosphors in fluorescent lamps is often reduced by double coating the lamps. The rare-earth phosphor blend is coated over a base layer of the inexpensive halophosphate phosphor (Fig. 9). In this configuration it absorbs a disproportionate amount of the uv discharge. For example, about 70% of the uv is absorbed in the inner coating with only one layer of triphosphor particles on the inside. [Pg.289]

The Red-Emitting Triphosphor. Eu + -activated Y2O2 phosphor is the universally used red-emitting triphosphor for lamps. The emission spectmm of this phosphor is almost ideal being dominated by one strong line at 611 nm. This SDg — transition is called hypersensitive because if, for... [Pg.290]

Using the luminol photochemiluminescence it is possible to determine not only the nitrates (as reported by us earlier), but also the nitrites. The urotropin is added to the water sample, and the solution obtained is illuminated by the Hg lamp. The chemiluminescence is measured after the addition of basic luminol solution to the illuminated solution. The detection limit is 2-10 M. The nitrates contained in the drinking water do not interfere at tenfold excess. [Pg.403]

Thermoplastic urethane adhesives may be processed into an adhesive film. I,amination of two substrates can, in theory, be done immediately, but the film is often extruded onto one substrate, covered by a release liner, and allowed to cool. Crystallization follows to create a non-tacky film that may be cut into specific shapes. The release liner is then removed, and the shaped adhesive can be heat-activated on one substrate, using infrared lamps. The second substrate is then nipped under pressure, followed by a cooling press to speed crystallization. Once the backbone has crystallized, the bond should be strong. [Pg.793]

High pressure xenon lamps are also employed in some TLC scanners (e.g. the scanner of Schoeffel and that of Farrand). They produce higher intensity radiation than do hydrogen or tungsten lamps. The maximum intensity of the radiation emitted lies between k = 500 and 700 nm. In addition to the continuum there are also weak emission lines below k = 495 nm (Fig. 14). The intensity of the radiation drops appreciably below k = 300 nm and the emission zone, which is stable for higher wavelengths, begins to move [43]. [Pg.22]

However, the optical train illustrated in Figure 22B allows the determination of fluorescence quenching. The interfering effect described above now becomes the major effect and determines the result obtained. For this purpose the deuterium lamp is replaced by a mercury vapor lamp, whose short-wavelength emission line (2 = 254 nm) excites the luminescence indicator in the layer. Since the radiation intensity is now much greater than was the case for the deuterium lamp, the fluorescence emitted by the indicator is also much more intense and is, thus, readily measured. [Pg.33]

The above nitrite (0.93 g) is dissolved in 40 ml of dry benzene and irradiated for 1 hr at 0-5° in a nitrogen atmosphere with two 200 Watt mercury lamps. The resulting suspension is concentrated and filtered to give 0.59 g of essentially pure 20a-hydroxy-18-oximinopregn-4-en-3-one as a benzene solvate mp 110-125°. Recrystallization from acetone gives an analytical sample mp 184-186° [a] 149° (CHCI3). [Pg.256]

Nonyl aldehyde (32.66 g, 0.23 mol) and furan (200 mL, 187.2 g, 2.75 mol) were mixed in a 250-mL photolysis flask equipped with a quartz immersion well containing a Vycor filter and a 450-W Hanovia Lamp. The system was kept at -20° C with an isopropyl alcohol bath cooled by a Cryocool Immersion Cooler (CClOO). Nitrogen was bubbled throughout the duration of the reaction, and the solution was stirred vigorously. Additional furan (150 mL, 140.4 g, 2.06 mol) was added during the course of the reaction. TLC analysis indicated completion of the reaction after 20 h. After evaporation of excess furan and NMR analysis of the resultant oil (48.70 g, ca. 100%) indicated the desired photoadduct had been formed, without contamination from unreacted nonyl aldehyde. [Pg.49]

The proposed mechanism is based on the basis of the fact that ylides (Scheme 23 and Scheme 24) undergo bond fission between the phosphorus atom and the phenyl group in TPPY as reported by Nagao et al. [51] and between the sulfur atom and the phenyl group in POSY as observed in triphenylsulfonium salts [52-55] when they are irradiated by a high-pressure mercury lamp. The phenyl radicals thus produced participate in the initiation of polymerization. [Pg.377]

Previously, the same author [52] reported that compounds containing the tricoordinated sulfur cation, such as the triphenylsulfonium salt, worked as effective initiators in the free radical polymerization of MMA and styrene [52]. Because of the structural similarity of sulfonium salt and ylide, diphenyloxosulfonium bis-(me-thoxycarbonyl) methylide (POSY) (Scheme 28), which contains a tetracoordinated sulfur cation, was used as a photoinitiator by Kondo et al. [63] for the polymerization of MMA and styrene. The photopolymerization was carried out with a high-pressure mercury lamp the orders of reaction with respect to [POSY] and [MMA] were 0.5 and 1.0, respectively, as expected for radical polymerization. [Pg.379]

Kerosene is heavier than gasoline and lighter than gas oil. The lighter portion of kerosene is most suitable as an illuminant for lamps. The heavier portions of kerosene traditionally have been used as stove oil. Since the 1950s, kerosene has been used as a major component in jet fuel. [Pg.943]

As indicated in Fig. 21.3, for both atomic absorption spectroscopy and atomic fluorescence spectroscopy a resonance line source is required, and the most important of these is the hollow cathode lamp which is shown diagrammatically in Fig. 21.8. For any given determination the hollow cathode lamp used has an emitting cathode of the same element as that being studied in the flame. The cathode is in the form of a cylinder, and the electrodes are enclosed in a borosilicate or quartz envelope which contains an inert gas (neon or argon) at a pressure of approximately 5 torr. The application of a high potential across the electrodes causes a discharge which creates ions of the noble gas. These ions are accelerated to the cathode and, on collision, excite the cathode element to emission. Multi-element lamps are available in which the cathodes are made from alloys, but in these lamps the resonance line intensities of individual elements are somewhat reduced. [Pg.790]


See other pages where Lamp, The is mentioned: [Pg.53]    [Pg.1330]    [Pg.357]    [Pg.196]    [Pg.248]    [Pg.429]    [Pg.118]    [Pg.122]    [Pg.65]    [Pg.298]    [Pg.15]    [Pg.15]    [Pg.291]    [Pg.346]    [Pg.428]    [Pg.1]    [Pg.512]    [Pg.134]    [Pg.418]    [Pg.153]    [Pg.373]    [Pg.28]    [Pg.798]    [Pg.1110]    [Pg.1303]    [Pg.15]    [Pg.33]    [Pg.259]    [Pg.298]    [Pg.128]    [Pg.216]    [Pg.558]    [Pg.671]    [Pg.800]    [Pg.898]    [Pg.899]    [Pg.243]    [Pg.35]   
See also in sourсe #XX -- [ Pg.134 ]




SEARCH



Lampe

Lamps

© 2024 chempedia.info