Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactose rates

Saccharic acid. Use the filtrate A) from the above oxidation of lactose or, alternatively, employ the product obtained by evaporating 10 g. of glucose with 100 ml. of nitric acid, sp. gr. 1 15, until a syrupy residue remains and then dissolving in 30 ml. of water. Exactly neutralise at the boiling point with a concentrated solution of potassium carbonate, acidify with acetic acid, and concentrate again to a thick syrup. Upon the addition of 50 per cent, acetic acid, acid potassium saccharate sepa rates out. Filter at the pump and recrystaUise from a small quantity of hot water to remove the attendant oxahc acid. It is necessary to isolate the saccharic acid as the acid potassium salt since the acid is very soluble in water. The purity may be confirmed by conversion into the silver salt (Section 111,103) and determination of the silver content by ignition. [Pg.453]

A typical fermentation medium for penicillin production contains lactose, com steep Hquot, and calcium carbonate (3,153,154). In most industrial processes the carbohydrate source, glucose, beet molasses, or lactose, is continuously added to the fermentation. The rate of glucose addition must be carefully monitored, by pH or rate of oxygen depletion, because the synthesis of penicillin is markedly reduced in the presence of excess glucose. [Pg.31]

Aerobic Fermentation The classic example of large-scale aerobic fermentation is the production of penicillin by the growth of a specific mold. Commercial vessel sizes are 40,000 to 200,000 L (1,400 to 7,000 ft ). The operation is semibatch in that the lactose or glucose nutrient and air are charged at controlled rates to a precharged batch of liquid nutrients and cell mass. Reaction time is 5 to 6 days. [Pg.2115]

CAP controls a number of operons, all of which are involved in the breakdown of sugar molecules and one of which is the lac operon. When the level of the breakdown products of lactose is low, the concentration of cyclic AMP in the cell increases and CAP is switched on, binds to its specific operators, and increases the rate of transcription of adjacent operons. [Pg.146]

Prior to the first hydrogenation batches, the supported ruthenium catalysts were reduced in the autoclave under hydrogen flow at 200°C for 2 hours (10 bar H2, heating/cooling rate 5°C/min). As the catalyst had been reduced, a lactose solution saturated with hydrogen was fed into the reactor rapidly and the hydrogen pressure and reactor temperature were immediately adjusted to the experimental conditions. Simultaneously, the impeller was switched on. This moment was considered as the initial starting point of the experiment. No notable lactose conversion was observed before the impeller was switched on. [Pg.105]

Hydrogenation of lactose to lactitol on sponge itickel and mtheitium catalysts was studied experimentally in a laboratory-scale slurry reactor to reveal the true reaction paths. Parameter estimation was carried out with rival and the final results suggest that sorbitol and galactitol are primarily formed from lactitol. The conversion of the reactant (lactose), as well as the yields of the main (lactitol) and by-products were described very well by the kinetic model developed. The model includes the effects of concentrations, hydrogen pressure and temperature on reaction rates and product distribution. The model can be used for optinuzation of the process conditions to obtain highest possible yields of lactitol and suppressing the amounts of by-products. [Pg.113]

Figure 20 Post-column detection of mono- and disaccharides with 4-amino-benzoylbenzamide. Column CarboPac PA-1. Gradient 1-10 mm NaOH (0-20 min.), 10-20 mM NaOH (20-35 min). Flow rate 1 ml/min. Detection absorbance at 400 nm after reaction with 4-aminobenzoylhydrazide. (a) Standard mixture of fucose (1), arabinose (2), galactose (3), glucose (4), xylose and N-acetylglucosamine (5 and 6), allose (7), 3-fucosyllactose (8), fructose (9), lactose (10), Man-(3-(l,4)-GlcNac. (b) Normal urine, (c) Urine from a child with (3-mannosidosis. (Reproduced with permission of Academic Press from Peelen, G. O. H., de Jong, J. G. N., and Wever, R. A., Anal. Biochem., 198, 334, 1991.)... Figure 20 Post-column detection of mono- and disaccharides with 4-amino-benzoylbenzamide. Column CarboPac PA-1. Gradient 1-10 mm NaOH (0-20 min.), 10-20 mM NaOH (20-35 min). Flow rate 1 ml/min. Detection absorbance at 400 nm after reaction with 4-aminobenzoylhydrazide. (a) Standard mixture of fucose (1), arabinose (2), galactose (3), glucose (4), xylose and N-acetylglucosamine (5 and 6), allose (7), 3-fucosyllactose (8), fructose (9), lactose (10), Man-(3-(l,4)-GlcNac. (b) Normal urine, (c) Urine from a child with (3-mannosidosis. (Reproduced with permission of Academic Press from Peelen, G. O. H., de Jong, J. G. N., and Wever, R. A., Anal. Biochem., 198, 334, 1991.)...
The intrinsic dissolution rates of selected fillers are compared in Table 4. Anhydrous lactose, which is... [Pg.365]

An autocatalytic reaction is one in which the reaction rate is proportional to a product concentration raised to a positive exponent. Some of the first articles in the literature of chemical kinetics deal with reactions of this type. For example, in 1857, Baeyer (12) reported that the reaction of bromine with lactose was autocatalytic. The hydrolyses of several esters also fit into the autocatalytic category, since the acids formed by reaction give rise to hydrogen ions that serve as catalysts for subsequent reaction. Among the most significant autocatalytic reactions are the fermentation reactions that involve the action of a microorganism on an organic feedstock. [Pg.338]

The reaction of a primary amine with lactose is accompanied by a browning of the solids, and the path of such reactions is easily following by means of diffuse reflectance spectroscopy. For instance, the reaction of isonicotinic acid hydrazide (Isoniazid) with lactose could be followed through changes in the reflectance spectrum [31]. As may be seen in Fig. 4, a steady decrease in reflectance was noted as the sample was heated for increasing amounts of time. The spectral data were used to deduce the rate constants for the browning reaction at various heating temperatures, and these rates could be correlated with those... [Pg.46]

Flow behavior of powders is also of interest in direct compression. It is generally accepted that the flow rate initially increases with particle size, achieves a maximum in the range of 100-400 /um, and then decreases [85]. An excipient that has been well characterized is lactose, which undergoes particle fragmentation when compacted. For a-lactose monohydrate, it has been shown that the... [Pg.181]

The reaction of neomycin with many compounds has been described in Section 3, hence numerous reports of neomycin incompatibility may be expected. Dale and Rundman have extensively reviewed the compatibility of neomycin with substances that may be encountered by the formulation pharmacist. Kudalker et al 03 have described the incompatibility of the antibiotic with rancid oils, and the incompatibility with bentonite, a montomorill-onite clay, has been reported by Danti and Guth306. The incompatibility with lactose, causing a discoloration of the mixture has been studied by Hammouda and Salakawy- 0 . The amount of browning produced was shown to be dependant on the initial pH of the solution. The rate of discoloration of the lactose/neomycin powder was directly related to the temperature of storage and the relative humidity of the atmosphere. Discoloration was overcome by addition of sodium bisulphite. [Pg.426]

Vemuri et al.17 looked at the effects of various cryoprotectants, freezing rates, and buffer systems on the shelf-life of lyophilized recombinant alphar antitrypsin (rAAT). Alpharantitrypsin (AAT) is labile in solution therefore, a more stable presentation was required. A competitive ELISA was used to measure total AAT in a sample. The AAT in the sample competed with HRP-labeled AAT for binding to the specific antibody. A stable formulation containing lactose as a cryoprotectant was found that maintained the protein s specific activity. [Pg.293]


See other pages where Lactose rates is mentioned: [Pg.159]    [Pg.122]    [Pg.157]    [Pg.266]    [Pg.277]    [Pg.179]    [Pg.474]    [Pg.155]    [Pg.156]    [Pg.159]    [Pg.104]    [Pg.106]    [Pg.109]    [Pg.1140]    [Pg.348]    [Pg.348]    [Pg.355]    [Pg.364]    [Pg.365]    [Pg.373]    [Pg.139]    [Pg.592]    [Pg.314]    [Pg.100]    [Pg.147]    [Pg.181]    [Pg.294]    [Pg.298]    [Pg.43]    [Pg.58]    [Pg.24]    [Pg.68]    [Pg.409]    [Pg.409]    [Pg.80]    [Pg.90]    [Pg.211]    [Pg.212]   
See also in sourсe #XX -- [ Pg.149 ]




SEARCH



Lactose disintegration rate

© 2024 chempedia.info