Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics steel corrosion

Singh SK, Mukherjee AK, Singh MM (2011) Kinetics of mild steel corrosion in aqueous formic acid solutions. Can Metall Quart 50 186-194... [Pg.504]

The rate (kinetics) and the completeness (fraction dissolved) of oxide fuel dissolution is an inverse function of fuel bum-up (16—18). This phenomenon becomes a significant concern in the dissolution of high bum-up MO fuels (19). The insoluble soHds are removed from the dissolver solution by either filtration or centrifugation prior to solvent extraction. Both financial considerations and the need for safeguards make accounting for the fissile content of the insoluble soHds an important challenge for the commercial reprocessor. If hydrofluoric acid is required to assist in the dissolution, the excess fluoride ion must be complexed with aluminum nitrate to minimize corrosion to the stainless steel used throughout the facility. Also, uranium fluoride complexes are inextractable and formation of them needs to be prevented. [Pg.204]

The theory has been advanced that the rapid growth of marine fouling in the tropics may provide a protective shield which counteracts the effect of the greater activity of the hotter water, and LaQue" has pointed out that in flowing sea water, when no fouling organisms became attached to small fully immersed specimens, corrosion of steel at 11° C proceeded at 0-18 mm/y compared with 0-36 mm/y at 21° C. This increase corresponds with what would be expected from chemical kinetics, where the rate of reaction is approximately doubled for a rise of 10° C. [Pg.370]

Many studies have shown that surface pretreatment of Fe-Cr alloys has a strong effect on the scale morphology and subsequent oxidation rate For instance, Caplan indicated that several Fe-Cr alloys show improvement in the corrosion resistance due to cold work, with greater than 16% Cr required to show the optimum benefit. Khanna and Gnanamoorthy examined the effect of cold work on 2.25%Cr-l%Mo steels at temperatures between 400°C and 950°C over 4h in 1 atm O2. They found that up to 90% reduction by cold rolling had a negligible effect on the oxidation rate up to 700°C. However, above 700°C there was a general reduction in the kinetics... [Pg.978]

Compared with ferritic carbon and low-alloy steels, relatively little information is available in the literature concerning stainless steels or nickel-base alloys. From the preceding section concerning low-alloy steels in high temperature aqueous environments, where environmental effects depend critically on water chemistry and dissolution and repassivation kinetics when protective oxide films are ruptured, it can be anticipated that this factor would be of even more importance for more highly alloyed corrosion-resistant materials. [Pg.1306]

Fig. 19.15 Schematic representation of range of corrosion potentials expected from various chemical tests for sensitisation in relation to the anodic dissolution kinetics of the matrix (Fe-l8Cr-IONi stainless steel) and grain boundary alloy (assumed to be Fe-lOCr-lONi) owing to depletion of Cr by precipitation of Cr carbides of a sensitised steel in a hot reducing acid (after Cowan and Tedmon )... Fig. 19.15 Schematic representation of range of corrosion potentials expected from various chemical tests for sensitisation in relation to the anodic dissolution kinetics of the matrix (Fe-l8Cr-IONi stainless steel) and grain boundary alloy (assumed to be Fe-lOCr-lONi) owing to depletion of Cr by precipitation of Cr carbides of a sensitised steel in a hot reducing acid (after Cowan and Tedmon )...
Kassner used a rotating disc, for which the hydrodynamic conditions are well defined, to study the dissolution kinetics of Type 304 stainless steel in liquid Bi-Sn eutectic. He established a temperature and velocity dependence of the dissolution rate that was consistent with liquid diffusion control with a transition to reaction control at 860 C when the speed of the disc was increased. The rotating disc technique has also been used to investigate the corrosion stability of both alloy and stainless steels in molten iron sulphide and a copper/65% calcium melt at 1220 C . The dissolution rate of the steels tested was two orders of magnitude higher in the molten sulphide than in the metal melt. [Pg.1062]

Corrosion or mixed potentials (a) Active corrosion in acid solutions (b) Passive metal in acid solutions Potential dependent on the redox potential of the solution and the kinetics of the anodic and cathodic reactions. Potential dependent on the kinetics of the h.e.r. on the bare metal surface. Potential is that of an oxide-hlmed metal, and is dependent on the redox potential of the solution. Zn in HCI Stainless steel in oxygenated H2SO4... [Pg.1242]

DR. PATEL One reason for much of the interest which prevails in this area right now, especially with iron ll), has to do with the corrosion of steel in industry and also in nuclear reactors. Normally one thinks of forming precipitates or particles by adding base to a solution and cooling it down. If iron(III) solutions are made more acidic and if you raise the temperature, these conditions lead to the formation of very, very well-defined particles. A very important event in this is the proton transfer kinetics that lead to the formation of the hydrolysis of many of these trivalent ions. [Pg.84]

Partial blocking effect was first identified for pure iron in contact with aerated sulphuric acid medium [55]. Corrosion of carbon steel in sodium chloride media clearly showed the porous layer effect (see Section 5.2) [74]. The same effect was found for zinc corrosion in sodium sulphate [75] and the properties of the layer which was demonstrated to be formed of an oxide/hydroxide mixture were further used for building a general kinetic model of anodic dissolution [76], usable for measurement of the corrosion rate from impedance data. [Pg.247]

This book consists of nine chapters. The second chapter provides an overview of the important thermodynamic and kinetic parameters of relevance to corrosion electrochemistry. This foundation is used in the third chapter to focus on what might be viewed as an aberration from normal dissolution kinetics, passivity. This aberration, or peculiar condition as Faraday called it, is critical to the use of stainless steels, aluminum alloys, and all of the so-called corrosion resistant alloys (CRAs). The spatially discrete failure of passivity leads to localized corrosion, one of the most insidious and expensive forms of environmental attack. Chapter 4 explores the use of the electrical nature of corrosion reactions to model the interface as an electrical circuit, allowing measurement methods originating in electrical engineering to be applied to nondestructive corrosion evaluation and... [Pg.6]

The role of alloying elements in weathering steels consists of the effect of formation of the protective layer of corrosion products increase in mechanical strength and toughness and improved weldability. The protective qualities of the corrosion products on the steel depend on the continuous growth of the adherent, compact, inner layer and on low porosity within the layer. The kinetics of atmospheric corrosion were found to obey the equation,... [Pg.213]


See other pages where Kinetics steel corrosion is mentioned: [Pg.479]    [Pg.9]    [Pg.38]    [Pg.404]    [Pg.474]    [Pg.508]    [Pg.267]    [Pg.445]    [Pg.93]    [Pg.323]    [Pg.22]    [Pg.39]    [Pg.118]    [Pg.132]    [Pg.135]    [Pg.286]    [Pg.546]    [Pg.992]    [Pg.1215]    [Pg.1298]    [Pg.1306]    [Pg.1307]    [Pg.1316]    [Pg.121]    [Pg.1120]    [Pg.435]    [Pg.242]    [Pg.28]    [Pg.15]    [Pg.138]    [Pg.218]    [Pg.323]    [Pg.372]    [Pg.378]    [Pg.377]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



Corrosion: kinetics

Steel corrosion

© 2024 chempedia.info