Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics of phase reactions

A basic property is the melting temperature since it is known that materials parameters which characterize the deformation behavior are well correlated with the melting temperature (Frost and Ashby, 1982). Examples are the elastic moduli which not only control the elastic deformation, but are also important parameters for describing the plastic deformation, and the diffusion coefficients which control not only the kinetics of phase reactions, but also the kinetics of high-temperature deformation, i.e. creep. Furthermore, the melting temperature is intuitively regarded as a measure of the phase stability since it limits the application temperature range. [Pg.8]

Thermodynamic and theoretical models for hysteresis and kinetics of phase reactions in the Pr and Tb oxide systems have been proposed. In the first study by Knittel et al. (1977) a model based on regular solution theory is developed and applied to hysteresis in the Pr and Tb oxide systems. Maren et al. (1984) modeled the Pr70 2-PrgOi6 hysteretic reaction using a thermodynamic formalism. Models assuming both noninteracting and interacting domains were considered. [Pg.427]

Formic acid can decompose either by dehydration, HCOOH — H2O + CO (AG° = —30.1 kJ/mol AH° = 10.5 kJ/mol) or by dehydrogenation, HCOOH H2 + CO2 (AG° = —58.6 kJ/mol AH° = —31.0 kJ/mol). The kinetics of these reactions have been extensively studied (19). In the gas phase metallic catalysts favor dehydrogenation, whereas oxide catalysts favor dehydration. Dehydration is the predominant mode of decomposition ia the Hquid phase, and is cataly2ed by strong acids. The mechanism is beheved to be as follows (19) ... [Pg.504]

Ma.nufa.cture. Mesityl oxide is produced by the Hquid-phase dehydration of diacetone alcohol ia the presence of acidic catalysts at 100—120°C and atmospheric pressure. As a precursor to MIBK, mesityl oxide is prepared ia this manner ia a distillation column ia which acetone is removed overhead and water-saturated mesityl oxide is produced from a side-draw. Suitable catalysts are phosphoric acid (177,178) and sulfuric acid (179,180). The kinetics of the reaction over phosphoric acid have been reported (181). [Pg.494]

The kinetics of this reaction, which can also be regarded as an erosion reaction, shows die effects of adsorption of the reaction product in retarding the reaction rate. The path of this reaction involves the adsorption of an oxygen atom donated by a carbon dioxide molecule on die surface of the coke to leave a carbon monoxide molecule in the gas phase. [Pg.272]

From a theoretical point of view the study of the kinetics of coupled catalytic reactions makes it possible to investigate mutual influencing of single reactions and the occurrence of some phenomena unknown in the kinetics of complex reactions in the homogeneous phase. This approach can yield additional information about interactions between the reactants and the surface of the solid catalyst. [Pg.2]

The kinetics of hydrogenation of phenol has already been studied in the liquid phase on Raney nickel (18). Cyclohexanone was proved to be the reaction intermediate, and the kinetics of single reactions were determined, however, by a somewhat simplified method. The description of the kinetics of the hydrogenation of phenol in gaseous phase on a supported palladium catalyst (62) was obtained by simultaneously solving a set of rate equations for the complicated reaction schemes containing six to seven constants. The same catalyst was used for a kinetic study also in the liquid phase (62a). [Pg.32]

Parallel ketonization of acetic acid and propionic acid was one of the transformations of this type studied in our Laboratory. Ryba6ek and Setinek (94) investigated the kinetics of these reactions in the gaseous phase at 316°C using thorium oxide on activated carbon (p. 27) as the catalyst. This model system allowed the study of each reaction separately as well as of the simultaneous conversion of both acids. [Pg.35]

In processing, it is frequently necessary to separate a mixture into its components and, in a physical process, differences in a particular property are exploited as the basis for the separation process. Thus, fractional distillation depends on differences in volatility. gas absorption on differences in solubility of the gases in a selective absorbent and, similarly, liquid-liquid extraction is based on on the selectivity of an immiscible liquid solvent for one of the constituents. The rate at which the process takes place is dependent both on the driving force (concentration difference) and on the mass transfer resistance. In most of these applications, mass transfer takes place across a phase boundary where the concentrations on either side of the interface are related by the phase equilibrium relationship. Where a chemical reaction takes place during the course of the mass transfer process, the overall transfer rate depends on both the chemical kinetics of the reaction and on the mass transfer resistance, and it is important to understand the relative significance of these two factors in any practical application. [Pg.573]

Little has been reported on the kinetics of this reaction in the liquid phase in one experiment at - 50°C, it has been reported that equilibrium was established within 30 seconds. It has been reported that the formation of BrCl in polat solvents is much faster than in non-polar solvents (ref. 1) hence, for the next reaction, one might expect some auto-catylitical behaviour. It was also reported in a review... [Pg.318]

The formation of nitrosamines in aprotic solvents has applicability to many practical lipophilic systems including foods (particularly bacon), cigarette smoke, cosmetics, and some drugs. The very rapid kinetics of nitrosation reactions in lipid solution indicates that the lipid phase of emulsions or analogous multiphase systems can act as "catalyst" to facilitate nitrosation reactions that may be far slower in purely aqueous media (41, 53, 54). This is apparently true in some cosmetic emulsion systems and may have important applicability to nitrosation reactions in vivo, particularly in the GI tract. In these multiphase systems, the pH of the aqueous phase may be poor for nitrosation in aqueous media (e.g., neutral or alkaline pH) because of the very small concentration of HONO or that can exist at these pH ranges. [Pg.200]

This definition of electrochemistry disregards systems in which nonequilibrium charged species are produced by external action in insulators for example, by electric discharge in the gas phase (electrochemistry of gases) or upon irradiation of liquid and sohd dielectrics (radiation chemistry). At the same time, electrochemistry deals with certain problems often associated with other fields of science, such as the structure and properties of sohd electrolytes and the kinetics of ioific reactions in solutions. [Pg.739]

Tjandra et al. (1998) have proposed an interfacial reaction model for the kinetics of the reaction between 1-bromo octane and sodium phenoxide to give 1-phenoxyoctane in a nonionic microemulsion. In this model the microemulsion is assumed to consist of the aqueous phase and the interface is covered by a monolayer of surfactant molecules. It is thus possible to assess the interfacial area from the concentration of the surfactant in the microemulsion medium. [Pg.151]

Another approach to the determination of surface kinetics in these systems has been to combine molecular beams in the 10 2-10 1 mbar pressure range with the use of the infrared chemiluminescence of the C02 formed during steady-state NO + CO reactions. This methodology has been used to follow the kinetics of the reaction over Pd(110) and Pd(l 11) surfaces [49], The activity of the NO + CO reaction on Pd(l 10) was determined to be much higher than on Pd(lll), as expected based on the UHV work discussed in previous sections but in contrast with result from experiments under higher pressures. On the basis of the experimental data on the dependence of the reaction rate on CO and NO pressures, the coverages of NO, CO, N, and O were calculated under various flux conditions. Note that this approach relied on the detection of the evolution of gas-phase... [Pg.77]

Oxide compounds are widely used as cathodic materials in the power sources and electrochemical generators. Some literature data indicates that cathodic materials based on nonstoichiometric oxide compounds make it possible to increase the solid-phase reduction process. The kinetics of electrochemical reactions and consequently the current density are the higher, the greater the degree of deviation from stoichiometry, and the lager the number of the defects in the compounds structure [1,2]. [Pg.493]

Oxidation of organic compounds by dioxygen is a phenomenon of exceptional importance in nature, technology, and life. The liquid-phase oxidation of hydrocarbons forms the basis of several efficient technological synthetic processes such as the production of phenol via cumene oxidation, cyclohexanone from cyclohexane, styrene oxide from ethylbenzene, etc. The intensive development of oxidative petrochemical processes was observed in 1950-1970. Free radicals participate in the oxidation of organic compounds. Oxidation occurs very often as a chain reaction. Hydroperoxides are formed as intermediates and accelerate oxidation. The chemistry of the liquid-phase oxidation of organic compounds is closely interwoven with free radical chemistry, chemistry of peroxides, kinetics of chain reactions, and polymer chemistry. [Pg.20]

In a fixed-bed catalytic reactor for a fluid-solid reaction, the solid catalyst is present as a bed of relatively small individual particles, randomly oriented and fixed in position. The fluid moves by convective flow through the spaces between the particles. There may also be diffusive flow or transport within the particles, as described in Chapter 8. The relevant kinetics of such reactions are treated in Section 8.5. The fluid may be either a gas or liquid, but we concentrate primarily on catalyzed gas-phase reactions, more common in this situation. We also focus on steady-state operation, thus ignoring any implications of catalyst deactivation with time (Section 8.6). The importance of fixed-bed catalytic reactors can be appreciated from their use in the manufacture of such large-tonnage products as sulfuric acid, ammonia, and methanol (see Figures 1.4,11.5, and 11.6, respectively). [Pg.512]

The HTE characteristics that apply for gas-phase reactions (i.e., measurement under nondiffusion-limited conditions, equal distribution of gas flows and temperature, avoidance of crosscontamination, etc.) also apply for catalytic reactions in the liquid-phase. In addition, in liquid phase reactions mass-transport phenomena of the reactants are a vital point, especially if one of the reactants is a gas. It is worth spending some time to reflect on the topic of mass transfer related to liquid-gas-phase reactions. As we discussed before, for gas-phase catalysis, a crucial point is the measurement of catalysts under conditions where mass transport is not limiting the reaction and yields true microkinetic data. As an additional factor for mass transport in liquid-gas-phase reactions, the rate of reaction gas saturation of the liquid can also determine the kinetics of the reaction [81], In order to avoid mass-transport limitations with regard to gas/liquid mass transport, the transfer rate of the gas into the liquid (saturation of the liquid with gas) must be higher than the consumption of the reactant gas by the reaction. Otherwise, it is not possible to obtain true kinetic data of the catalytic reaction, which allow a comparison of the different catalyst candidates on a microkinetic basis, as only the gas uptake of the liquid will govern the result of the experiment (see Figure 11.32a). In three-phase reactions (gas-liquid-solid), the transport of the reactants to the surface of the solid (and the transport from the resulting products from this surface) will also... [Pg.411]

A kinetic study requires the determination of the concentration (in mol dnr3) of at least one of the reactant or product as a function of time. In case of gaseous phase, in place of concentration, the partial pressure is determined. The method of analysis employed must be faster than the rate of reaction. The conventional methods of analysis can be applied to the reactions which have a half-life of at least a few minutes. The measurement of some physical property which is proportional to the concentration/partial pressure can also be taken for determination of the rate. In many cases of reactions in solution, it is necessary to take out aliquots from the reaction mixture at suitable intervals of time, arrest the reaction in aliquots by means of suitable means and then analyse the sample. Some conventional physical methods used to study the kinetics of slow reactions are described as follows. [Pg.39]

The phenomena of surface precipitation and isomorphic substitutions described above and in Chapters 3.5, 6.5 and 6.6 are hampered because equilibrium is seldom established. The initial surface reaction, e.g., the surface complex formation on the surface of an oxide or carbonate fulfills many criteria of a reversible equilibrium. If we form on the outer layer of the solid phase a coprecipitate (isomorphic substitutions) we may still ideally have a metastable equilibrium. The extent of incipient adsorption, e.g., of HPOjj on FeOOH(s) or of Cd2+ on caicite is certainly dependent on the surface charge of the sorbing solid, and thus on pH of the solution etc. even the kinetics of the reaction will be influenced by the surface charge but the final solid solution, if it were in equilibrium, would not depend on the surface charge and the solution variables which influence the adsorption process i.e., the extent of isomorphic substitution for the ideal solid solution is given by the equilibrium that describes the formation of the solid solution (and not by the rates by which these compositions are formed). Many surface phenomena that are encountered in laboratory studies and in field observations are characterized by partial, or metastable equilibrium or by non-equilibrium relations. Reversibility of the apparent equilibrium or congruence in dissolution or precipitation can often not be assumed. [Pg.301]

In many reactions, transfer of the anion across the interface and subsequent diffusion into the bulk of the organic phase will not be the rate-determining step when lipophilic catalysts are used, but the effect of less lipophilic catalysts may be influenced more by the anion and the mechanism of the transfer process. Thus, for example, the reactive anion is frequently produced in base-initiated reactions by proton extraction from the substrate at the two-phase interface and diffusion of the ion-pair contributes to the overall kinetics of the reaction. Additionally, the reactivity of the anion depends on its degree of hydration and on its association with the quaternary ammonium cation. In most situations, the activity of the transferred anion is enhanced, compared with its reactivity in aqueous media, as its degree of hydration is reduced, whereas a relatively weak electrostatic interaction between the two ions resulting from the bulkiness of the cation enhances the reactivity of the anion by making it more available for reaction and will be a major factor in the ratedetermining step. [Pg.17]

The highly hydrophilic alcohols, pentaerythritol and 2-ethyl-2-hydroxymethyl-propan-l,3-diol, can be converted into their corresponding ethers in good yields under phase-transfer catalytic conditions [12]. Etherification of pentaerythritol tends to yield the trialkoxy derivative and kinetics of the reaction have been shown to be controlled by the solubility of the ammonium salt of the tris-ether in the organic phase and the equilibrium between the tris-ether and its sodium salt [13]. Total etherification of the tetra-ol is attained in good yield when reactive haloalkanes are used, and tetra-rt-octylammonium, in preference to tetra-n-butylammonium, bromide [12, 13]. [Pg.70]


See other pages where Kinetics of phase reactions is mentioned: [Pg.413]    [Pg.444]    [Pg.69]    [Pg.413]    [Pg.444]    [Pg.69]    [Pg.830]    [Pg.284]    [Pg.42]    [Pg.479]    [Pg.239]    [Pg.18]    [Pg.1459]    [Pg.284]    [Pg.110]    [Pg.247]    [Pg.234]    [Pg.400]    [Pg.197]    [Pg.712]    [Pg.148]    [Pg.339]    [Pg.485]    [Pg.263]    [Pg.107]    [Pg.602]    [Pg.554]    [Pg.58]    [Pg.150]    [Pg.196]   
See also in sourсe #XX -- [ Pg.444 ]




SEARCH



Kinetics and Thermodynamics of Elementary Reversible Reactions in the Gas Phase

Kinetics and mechanism of gas-phase reactions

Kinetics of liquid-phase reactions

Phase kinetic

Phase reactions, kinetics

Reaction Kinetics and Properties of Evolved Phases

© 2024 chempedia.info