Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics metal ions

It turned out that the dodecylsulfate surfactants Co(DS)i Ni(DS)2, Cu(DS)2 and Zn(DS)2 containing catalytically active counterions are extremely potent catalysts for the Diels-Alder reaction between 5.1 and 5.2 (see Scheme 5.1). The physical properties of these micelles have been described in the literature and a small number of catalytic studies have been reported. The influence of Cu(DS)2 micelles on the kinetics of quenching of a photoexcited species has been investigated. Interestingly, Kobayashi recently employed surfactants in scandium triflate catalysed aldol reactions". Robinson et al. have demonshuted that the interaction between metal ions and ligand at the surface of dodecylsulfate micelles can be extremely efficient. ... [Pg.139]

Noncnzymc-Catalyzcd Reactions The variable-time method has also been used to determine the concentration of nonenzymatic catalysts. Because a trace amount of catalyst can substantially enhance a reaction s rate, a kinetic determination of a catalyst s concentration is capable of providing an excellent detection limit. One of the most commonly used reactions is the reduction of H2O2 by reducing agents, such as thiosulfate, iodide, and hydroquinone. These reactions are catalyzed by trace levels of selected metal ions. Eor example the reduction of H2O2 by U... [Pg.637]

Hydrated amorphous silica dissolves more rapidly than does the anhydrous amorphous silica. The solubility in neutral dilute aqueous salt solutions is only slighdy less than in pure water. The presence of dissolved salts increases the rate of dissolution in neutral solution. Trace amounts of impurities, especially aluminum or iron (24,25), cause a decrease in solubility. Acid cleaning of impure silica to remove metal ions increases its solubility. The dissolution of amorphous silica is significantly accelerated by hydroxyl ion at high pH values and by hydrofluoric acid at low pH values (1). Dissolution follows first-order kinetic behavior and is dependent on the equilibria shown in equations 2 and 3. Below a pH value of 9, the solubility of amorphous silica is independent of pH. Above pH 9, the solubility of amorphous silica increases because of increased ionization of monosilicic acid. [Pg.488]

Rates of Reaction. The rates of formation and dissociation of displacement reactions are important in the practical appHcations of chelation. Complexation of many metal ions, particulady the divalent ones, is almost instantaneous, but reaction rates of many higher valence ions are slow enough to measure by ordinary kinetic techniques. Rates with some ions, notably Cr(III) and Co (III), maybe very slow. Systems that equiUbrate rapidly are termed kinetically labile, and those that are slow are called kinetically inert. Inertness may give the appearance of stabiUty, but a complex that is apparentiy stable because of kinetic inertness maybe unstable in the thermodynamic equihbrium sense. [Pg.386]

The oxidation of a particular metal in air is limited by the outward diffusion of metallic ions through an unbroken surface film of one species of oxide. Assume that the concentration of metallic ions in the film immediately next to the metal is Cj, and that the concentration of ions in the film immediately next to the air is C2, where and C2 are constants. Use Tick s First Law to show that the oxidation of the metal should satisfy parabolic kinetics, with weight gain Am given by... [Pg.287]

The protection potential can be evaluated kinetically for such cases [10,21]. It is assumed that the concentration of metal ions on the metal surface is Cq. The weight loss rate follows from the first law of diffusion ... [Pg.53]

Kinetic analysis (metal ion acts as catalyst) Sensitive, highly selective, only needs small samples 1 Q- to 10- M... [Pg.316]

However, there is an important difference between these two systems in the ligand-metal ion ratio in complexation. Namely, micellar reactions require a more generalized reaction Scheme 3, where the molarity of ligand n is either 1 or 2 depending upon the structure of the ligands. This scheme gives rates Eq. 2-4 for n = 1 and Eq. 3, 5, 6 for n = 2. The results of the kinetic analysis are shown in Table 3. [Pg.156]

Figure 5a indicates the effect of the CTAB concentration on the rate constants of the complexes of 38b and 38c. In the case of the water soluble 38b ligand, the rate increases with increasing CTAB concentration up to a saturation level. This type of saturation kinetics is usually interpreted to show the incorporation of a ligand-metal ion complex into a micellar phase from a bulk aqueous phase, and the catalytic activity of the complex is higher in the micellar phase than in the aqueous phase. In the case of lipophilic 38c, a very similar curve as in Fig. 4 is obtained. At a first glance, there appears to be a big difference between these two curves. However, they are rather common in micellar reactions and obey the same reaction mechanism 27). [Pg.158]

The tautomerization is induced by cobalt(II) which forms the thermodynamically more stable metalatcd hydroporphyrins from which the cobalt can be removed using trifluoroacctic acid under kinetic control. Experiments with porphyrinogen and hexahydroporphyrin show that the porphyrinogen-hexahydroporphyrin equilibrium can be shifted by complexation of porphyrinogen with metal ions to the more stable metal hexahydroporphyrins and that metal-free hexahydroporphyrins tautomerize back to the more stable metal-free porphyrinogens.29... [Pg.625]

Malek et al.49-190 often use.the terms metal ion catalysis and consider that metal ions play a very important role. According to our knowledge of esterification kinetics, this is only an assumption although these authors provided interesting arguments on esterification kinetics49 ... [Pg.90]

Although many ammonium metal phosphates are known, few kinetic studies of their decompositions have been reported and no systematic investigations of the influence of metal ion or structure on the deammi-nation reactions are available. Thermal analyses [971] of compounds of the type MNH4P04 xH20 (where M is a divalent metal) show that, after dehydration, there is a continuous and simultaneous evolution of NH3 and H20 [137], maintained until crystalline M2P207 is formed, e.g. [Pg.202]

Water exchange kinetics in labile aquo and substituted aquo transition metal ions by means of 170 n.m.r. studies. J. P. Hunt, Coord. Chem. Rev., 1971, 7,1-10 (29). [Pg.33]

The kinetics of ion backspillover on the other hand will depend on two factors On the rate, I/nF, of their formation at the tpb and on their surface diffusivity, Ds, on the metal surface. As will be shown in Chapters 4 and 5 the rate of electrochemically controlled ion backspillover is normally limited by I/nF, i.e. the slow step is their transfer at the tpb. Surface diffusion is usually fast. Thus, as shown in Chapter 5, for the case of Pt electrodes where reliable surface O diffusivity data exist, obtained by Gomer and Lewis several years ago,76 Ds is at least 4.-10 11 cm2/s at 400°C and thus an O2 ion can move at least 1 pm per s on a Pt(lll) or Pt(110) surface. Therefore ion backspillover from solid electrolytes onto electrode surface is not only thermodynamically feasible, but can also be quite fast on the electrode surface. But does it really take place This we will see in the next Chapter. [Pg.106]

Crystal-field theory (CFT) was constructed as the first theoretical model to account for these spectral differences. Its central idea is simple in the extreme. In free atoms and ions, all electrons, but for our interests particularly the outer or non-core electrons, are subject to three main energetic constraints a) they possess kinetic energy, b) they are attracted to the nucleus and c) they repel one another. (We shall put that a little more exactly, and symbolically, later). Within the environment of other ions, as for example within the lattice of a crystal, those electrons are expected to be subject also to one further constraint. Namely, they will be affected by the non-spherical electric field established by the surrounding ions. That electric field was called the crystalline field , but we now simply call it the crystal field . Since we are almost exclusively concerned with the spectral and other properties of positively charged transition-metal ions surrounded by anions of the lattice, the effect of the crystal field is to repel the electrons. [Pg.27]

As already mentioned, complexes of chromium(iii), cobalt(iii), rhodium(iii) and iridium(iii) are particularly inert, with substitution reactions often taking many hours or days under relatively forcing conditions. The majority of kinetic studies on the reactions of transition-metal complexes have been performed on complexes of these metal ions. This is for two reasons. Firstly, the rates of reactions are comparable to those in organic chemistry, and the techniques which have been developed for the investigation of such reactions are readily available and appropriate. The time scales of minutes to days are compatible with relatively slow spectroscopic techniques. The second reason is associated with the kinetic inertness of the products. If the products are non-labile, valuable stereochemical information about the course of the substitution reaction may be obtained. Much is known about the stereochemistry of ligand substitution reactions of cobalt(iii) complexes, from which certain inferences about the nature of the intermediates or transition states involved may be drawn. This is also the case for substitution reactions of square-planar complexes of platinum(ii), where study has led to the development of rules to predict the stereochemical course of reactions at this centre. [Pg.187]

Possible modes of regulation of filament assembly may be anticipated from the basic properties of actin. We have shown that the tightly bound divalent metal ion (Ca or Mg ) interacts with the P- and y-phosphates of ATP bound to actin, and that the Me-ATP bidentate chelate is bound to G-actin in the A configuration. The nature of the bound metal ion affects the conformation of actin, the binding kinetics of ATP and ADP, and the rate of ATP hydrolysis. [Pg.44]

An important result of the concepts discussed in this section and the preceding one is that precipitation and complexation reactions exert joint control over metal ion solubility and transport. Whereas precipitation can limit the dissolved concentration of a specific species (Me ), complexation reactions can allow the total dissolved concentration of that metal to be much higher. The balance between these two competing processes, taking into account kinetic and equilibrium effects, often determines how much metal is transported in solution between two sites. [Pg.391]

The mass separated, pulsed, and focused primary ions with the energy of 1 -25 keV, typically liquid metal ions such as Ga, Cs, and O", are used to bombard the sample surface, causing the secondary elemental or cluster ions to emit from the surface. The secondary ions are then electrostatically accelerated into a field-free drift region with a nominal kinetic energy of ... [Pg.32]


See other pages where Kinetics metal ions is mentioned: [Pg.12]    [Pg.405]    [Pg.86]    [Pg.168]    [Pg.253]    [Pg.839]    [Pg.8]    [Pg.96]    [Pg.134]    [Pg.213]    [Pg.981]    [Pg.1059]    [Pg.114]    [Pg.147]    [Pg.148]    [Pg.215]    [Pg.233]    [Pg.314]    [Pg.515]    [Pg.57]    [Pg.88]    [Pg.224]    [Pg.19]    [Pg.182]    [Pg.187]    [Pg.194]    [Pg.49]    [Pg.12]    [Pg.40]    [Pg.46]    [Pg.334]    [Pg.64]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Homogeneous catalytic kinetics metal ions

Ion kinetics

© 2024 chempedia.info