Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics investigation

Case 2. The particles rotate in small packets ( coherently or in phase ). Obviously, the first-order rate law no longer holds. In chapter B2.1 we shall see that this simple consideration has found a deeper meaning in some of the most recent kinetic investigations [21]. [Pg.767]

Careful examination of literature reporting Lewis-acid catalysis of Diels-Alder reactions in combination with kinetic investigations indicate that bidentate (or multidentate) reactants are required in order to ensure efficient catalysis in water. Moreover, studies of a number of model dienophiles revealed that a potentially chelating character is not a guarantee for coordination and subsequent catalysis. Consequently extension of the scope in this direction does not seem feasible. [Pg.119]

When unsubstituted, C-5 reacts with electrophilic reagents. Thus phosphorus pentachloride chlorinates the ring (36, 235). A hydroxy group in the 2-position activates the ring towards this reaction. 4-Methylthiazole does not react with bromine in chloroform (201, 236), whereas under the same conditions the 2-hydroxy analog reacts (55. 237-239. 557). Activation of C-5 works also for sulfonation (201. 236), nitration (201. 236. 237), Friede 1-Crafts reactions (201, 236, 237, 240-242), and acylation (243). However, iodination fails (201. 236). and the Gatterman or Reimer-Tieman reactions yield only small amounts of 4-methyl-5-carboxy-A-4-thiazoline-2-one. Recent kinetic investigations show that 2-thiazolones are nitrated via a free base mechanism. A 2-oxo substituent increases the rate of nitration at the 5-position by a factor of 9 log... [Pg.402]

Alkoxythiazoles are easily cleaved by acids yielding A-4-thiazoline-2-ones (36). C-5 Nitration of the thiazole ring is favored by the 2-alkoxy group (288. 297, 307). Recent kinetic investigations have shown that the rate enhancement is 3 log units (893). [Pg.410]

Kinetic investigations of alkylchlorodiazirine thermolysis were carried out in the gas phase 70JCS(A)1916). Chloromethyldiazirine (232) decomposition follows first order kinetics giving nitrogen and vinyl chloride, easily interpretable as isomerization of a carbene. [Pg.225]

The normal course of a kinetic investigation involves postulating likely mechanisms and comparing the observed rate law with those expected for the various mechanisms. Those mechanisms that are incompatible with the observed kinetics can be eliminated as possibilities. Let us consider aromatic nitration by nitric acid in an inert solvent as a typical example. We will restrict the mechanisms being considered to the three shown below. In an actual case, such arbitrary restriction would not be imposed, but instead all mechanisms compatible with existing information would be considered. [Pg.195]

Chemical kinetics mainly relies on the rates of chemical reactions and how tliese depend on factors such as concentration and temperamre. An understanding of chemical kinetics is important in providing essential evidence as to tlie mechanisms of chemical processes. Although important evidence about mechanisms can be obtained by non-kinetic investigations, such as tlie detection of reaction intenuediates, knowledge of a mechanism can be confirmed only after a detailed kinetic investigation has been performed. A kinetic investigation can also disprove a mechanism, but cannot ascertain a mechanism. [Pg.1119]

Kinetic investigations cover a wide range from various viewpoints. Chemical reactions occur in various phases such as the gas phase, in solution using various solvents, at gas-solid, and other interfaces in the liquid and solid states. Many techniques have been employed for studying the rates of these reaction types, and even for following fast reactions. Generally, chemical kinetics relates to tlie studies of the rates at which chemical processes occur, the factors on which these rates depend, and the molecular acts involved in reaction mechanisms. Table 1 shows the wide scope of chemical kinetics, and its relevance to many branches of sciences. [Pg.1119]

Chemistry can be divided (somewhat arbitrarily) into the study of structures, equilibria, and rates. Chemical structure is ultimately described by the methods of quantum mechanics equilibrium phenomena are studied by statistical mechanics and thermodynamics and the study of rates constitutes the subject of kinetics. Kinetics can be subdivided into physical kinetics, dealing with physical phenomena such as diffusion and viscosity, and chemical kinetics, which deals with the rates of chemical reactions (including both covalent and noncovalent bond changes). Students of thermodynamics learn that quantities such as changes in enthalpy and entropy depend only upon the initial and hnal states of a system consequently thermodynamics cannot yield any information about intervening states of the system. It is precisely these intermediate states that constitute the subject matter of chemical kinetics. A thorough study of any chemical reaction must therefore include structural, equilibrium, and kinetic investigations. [Pg.1]

In the process of establishing the kinetic scheme, the rate studies determine the effects of several possible variables, which may include the temperature, pressure, reactant concentrations, ionic strength, solvent, and surface effects. This part of the kinetic investigation constitutes the phenomenological description of the system. [Pg.7]

Exploitation of analytical selectivity. We have seen, in our discussion of the A —> B C series reaction (Scheme IX), that access to the concentration of A as a function of time is valuable because it permits to be easily evaluated. Modern analytical methods, particularly chromatography, constitute a powerful adjunct to kinetic investigations, and they render nearly obsolete some very difficult kinetic problems. For example, the freedom to make use of the pseudoorder technique is largely dependent upon the high sensitivity of analytical methods, which allows us to set one reactant concentration much lower than another. An interesting example of analytical control in the study of the Scheme IX system is the spectrophotometric observation of the reaction solution at an isosbestic point of species B and C, thus permitting the A to B step to be observed. [Pg.79]

Kinetic investigation of the reaction of cotarnine and a few aromatic aldehydes (iV-methylcotarnine, m-nitrobenzaldehyde) with hydrogen eyanide in anhydrous tetrahydrofuran showed such differences in the kinetic and thermodynamic parameters for cotarnine compared to those for the aldehydes, and also in the effect of catalysts, so that the possibility that cotarnine was reacting in the hypothetical amino-aldehyde form could be completely eliminated. Even if the amino-aldehyde form is present in concentrations under the limit of spectroscopic detection, then it still certainly plays no pfi,rt in the chemical reactions. This is also expected by Kabachnik s conclusions for the reactions of tautomeric systems where the equilibrium is very predominantly on one side. [Pg.177]

For kinetic investigations and for activity measurements, either photometric assays or - because of the higher complexity of the reactants converted by biocatalysts - HPEC methods can often be used. Here the ionic liquid itself or impurities may interfere with the analytical method. [Pg.338]

Nishioka and Fujita78) have also determined the Kd values fora- and (S-cyclodextrin complexes with p- and/or m-substituted phenyl acetates through kinetic investigations on the alkaline hydrolysis of the complexes. The Kd values obtained were analyzed in the same manner as those for cyclodextrin-phenol complexes to give the Kd(X) values (Table 5). The quantitative structure-activity relationships were formulated as Eqs. 30 to 32 ... [Pg.78]

Moreover, in the case of hydride intervention, still a further factor, namely the kinetics of hydrogen diffusion into the metal, influences also the overall kinetics by removing a reactant from a reaction zone. In order to compare the velocity of reaction of hydrogen, catalyzed by palladium, with the velocity of the same reaction proceeding on the palladium hydride catalyst, it might be necessary to conduct the kinetic investigations under conditions when no hydride formation is possible and also when a specially prepared hydride is present in the system from the very beginning. [Pg.256]

In 1988 Masoud and Ishak demonstrated that ( -arenediazo methyl ethers do not react with 2-naphthol in dry organic solvents such as dioxan, ethanol, 2-propanol, but only in the presence of water. The reactions are catalyzed by hydrochloric acid (even in the absence of water). Under such conditions almost quantitative yields of azo compounds were obtained. A careful and extensive kinetic investigation of the HCl-catalyzed dediazoniation of substituted benzenediazo methyl ethers, varying the HC1 concentration and the diazo ether/2-naphthol ratio (the latter either absent or in large excess), and comparing the observed rate constants with Hammett s acidity functions for dioxane and ethanol (see Rochester, 1970) indicated the mechanism shown in Schemes 12-8 to 12-10 (DE = diazo methyl ether, D+ = diazonium ion). [Pg.313]

Almost all kinetic investigations on azo coupling reactions have been made using spectrophotometric methods in very dilute solutions. Uelich et al. (1990) introduced the method of direct injective enthalpimetry for such kinetic measurements. This method is based on the analysis of the zero-current potential-time curves obtained by the use of a gold indicator electrode with a surface which is periodically restored (Dlask, 1984). The method can be used for reactions in high (industrial) concentrations. [Pg.354]

More recently, Bagal and coworkers (Luchkevich et al., 1991) obtained similar results in a kinetic investigation of the coupling reactions of some substituted benzenediazonium ions with 1,4-naphtholsulfonic acid, and with 1,3,6-, 2,6,8-, and 2,3,6-naphtholdisulfonic acids. The kinetic results are consistent with the transient formation of an intermediate associative product. The maximum concentration of this product reaches up to 94% of the diazonium salt used in the case of the reaction of the 4-nitrobenzenediazonium ion with 1,4-naphtholsulfonic acid (pH 2-4, exact value not given). The authors assume that this intermediate is present in a side equilibrium, i. e., the mechanism of Scheme 12-77 mentioned above rather than that of Scheme 12-76, and that the intermediate is the O-azo ether. [Pg.366]

Some limitations of optical microscopy were apparent in applying [247—249] the technique to supplement kinetic investigations of the low temperature decomposition of ammonium perchlorate (AP), a particularly extensively studied solid phase rate process [59]. The porous residue is opaque. Scanning electron microscopy showed that decomposition was initiated at active sites scattered across surfaces and reaction resulted in the formation of square holes on m-faces and rhombic holes on c-faces. These sites of nucleation were identified [211] as points of intersection of line dislocations with an external boundary face and the kinetic implications of the observed mode of nucleation and growth have been discussed [211]. [Pg.26]

Two alternative methods have been used in kinetic investigations of thermal decomposition and, indeed, other reactions of solids in one, yield—time measurements are made while the reactant is maintained at a constant (known) temperature [28] while, in the second, the sample is subjected to a controlled rising temperature [76]. Measurements using both techniques have been widely and variously exploited in the determination of kinetic characteristics and parameters. In the more traditional approach, isothermal studies, the maintenance of a precisely constant temperature throughout the reaction period represents an ideal which cannot be achieved in practice, since a finite time is required to heat the material to reaction temperature. Consequently, the initial segment of the a (fractional decomposition)—time plot cannot refer to isothermal conditions, though the effect of such deviation can be minimized by careful design of equipment. [Pg.41]

Kinetic investigations using rising temperature techniques Since, in general, rates of reaction vary with both a and T, i.e. [Pg.97]

The grouping of ammonium salts in a separate section serves to emphasize the similarities of behaviour which are apparent in reactions yielding the volatile NH3 molecule, following removal of a proton from the NH4 cation. This property is not unique indeed, many cations are volatile and numerous salts leave no residue on completion of decomposition. Few kinetic investigations have, however, been reported for other compounds, in contrast to the extensive and detailed rate measurements which have been published for solid phase decompositions of many ammonium salts. Comparisons with the metal salts containing the same anion are sometimes productive, so that no single method of classification is altogether satisfactory. [Pg.195]

While there have been many non-isothermal studies of the decompositions of lanthanide oxalates, fewer detailed kinetic investigations have been reported. The anhydrous salts are difficult to prepare. La, Pr and Nd oxalates decompose [1097] to the oxide with intervention of a stable oxycarbonate, but no intermediate was detected during decomposition of the other lanthanide oxalates. The product CO disproportionates exten-... [Pg.223]

There is an extensive literature devoted to the preparation and structure determination of coordination compounds. Thermal analysis (Chap. 2, Sect. 4) has been widely and successfully applied in determinations [1113, 1114] of the stoichiometry and thermochemistry of the rate processes which contribute to the decompositions of these compounds. These stages may overlap and may be reversible, making non-isothermal kinetic data of dubious value (Chap. 3, Sect. 6). There is, however, a comparatively small number of detailed isothermal kinetic investigations, together with supporting microscopic and other studies, of the decomposition of coordination compounds which yields valuable mechanistic information. [Pg.231]

Decompositions of crystalline mixed hydroxides to mixed oxides often occur at temperatures lower than those required to produce the same phases through the direct interaction of metal oxides. This route thus offers an attractive approach for the preparation of catalysts of high area and activity [1147]. Detailed kinetic investigations comparable with those for the dehydroxylations of a number of pure hydroxides (Sect. 2.1) are not, however, available. [Pg.242]

Experimental techniques used in the kinetic investigation of solid decompositions (described in Chap. 2) may need modification for the study of rate processes which yield no gaseous products. Measurements... [Pg.250]

While kinetic investigations of these reactions were incomplete, it was shown that the deceleratory process obeyed the Jander equation [eqn. (14)] approximately. [Pg.280]


See other pages where Kinetics investigation is mentioned: [Pg.1932]    [Pg.89]    [Pg.404]    [Pg.245]    [Pg.513]    [Pg.587]    [Pg.174]    [Pg.81]    [Pg.215]    [Pg.119]    [Pg.389]    [Pg.391]    [Pg.9]    [Pg.12]    [Pg.62]    [Pg.144]    [Pg.145]    [Pg.175]    [Pg.251]    [Pg.10]    [Pg.214]    [Pg.266]   
See also in sourсe #XX -- [ Pg.144 , Pg.145 ]

See also in sourсe #XX -- [ Pg.6 , Pg.7 ]




SEARCH



Energetics, kinetics, and the investigation of mechanism

Experimental principles in the investigation of polymer degradation kinetics

Glucose kinetic investigation

Investigation of Enzyme Kinetics

Investigations, kinetic

Investigations, kinetic

Iridium kinetic investigations

Kinetic investigations on model substances

Kinetic investigations studies

Kinetic investigations using rising temperature techniques

Kinetics investigation zeolites

Kinetics investigations Kinetic studies

Kinetics, nucleation investigations

Laboratory reactors for investigating the kinetics of gas-liquid reactions

Mechanistic Investigation and Kinetics of Alkene Oligomerization

Model Kinetic Investigations

Monosaccharides kinetic investigation

Other Approaches to the Investigation of Anodic Dissolution Kinetics and Mechanisms

Physiological processes kinetic investigations

Reaction-kinetical investigations

Some comments on the use of isotopes in kinetic investigations

Tautomerism kinetic investigations

The use of electrochemical methods for investigating kinetics and mechanisms

© 2024 chempedia.info