Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic investigations studies

Careful examination of literature reporting Lewis-acid catalysis of Diels-Alder reactions in combination with kinetic investigations indicate that bidentate (or multidentate) reactants are required in order to ensure efficient catalysis in water. Moreover, studies of a number of model dienophiles revealed that a potentially chelating character is not a guarantee for coordination and subsequent catalysis. Consequently extension of the scope in this direction does not seem feasible. [Pg.119]

Kinetic investigations cover a wide range from various viewpoints. Chemical reactions occur in various phases such as the gas phase, in solution using various solvents, at gas-solid, and other interfaces in the liquid and solid states. Many techniques have been employed for studying the rates of these reaction types, and even for following fast reactions. Generally, chemical kinetics relates to tlie studies of the rates at which chemical processes occur, the factors on which these rates depend, and the molecular acts involved in reaction mechanisms. Table 1 shows the wide scope of chemical kinetics, and its relevance to many branches of sciences. [Pg.1119]

Chemistry can be divided (somewhat arbitrarily) into the study of structures, equilibria, and rates. Chemical structure is ultimately described by the methods of quantum mechanics equilibrium phenomena are studied by statistical mechanics and thermodynamics and the study of rates constitutes the subject of kinetics. Kinetics can be subdivided into physical kinetics, dealing with physical phenomena such as diffusion and viscosity, and chemical kinetics, which deals with the rates of chemical reactions (including both covalent and noncovalent bond changes). Students of thermodynamics learn that quantities such as changes in enthalpy and entropy depend only upon the initial and hnal states of a system consequently thermodynamics cannot yield any information about intervening states of the system. It is precisely these intermediate states that constitute the subject matter of chemical kinetics. A thorough study of any chemical reaction must therefore include structural, equilibrium, and kinetic investigations. [Pg.1]

In the process of establishing the kinetic scheme, the rate studies determine the effects of several possible variables, which may include the temperature, pressure, reactant concentrations, ionic strength, solvent, and surface effects. This part of the kinetic investigation constitutes the phenomenological description of the system. [Pg.7]

Exploitation of analytical selectivity. We have seen, in our discussion of the A —> B C series reaction (Scheme IX), that access to the concentration of A as a function of time is valuable because it permits to be easily evaluated. Modern analytical methods, particularly chromatography, constitute a powerful adjunct to kinetic investigations, and they render nearly obsolete some very difficult kinetic problems. For example, the freedom to make use of the pseudoorder technique is largely dependent upon the high sensitivity of analytical methods, which allows us to set one reactant concentration much lower than another. An interesting example of analytical control in the study of the Scheme IX system is the spectrophotometric observation of the reaction solution at an isosbestic point of species B and C, thus permitting the A to B step to be observed. [Pg.79]

Some limitations of optical microscopy were apparent in applying [247—249] the technique to supplement kinetic investigations of the low temperature decomposition of ammonium perchlorate (AP), a particularly extensively studied solid phase rate process [59]. The porous residue is opaque. Scanning electron microscopy showed that decomposition was initiated at active sites scattered across surfaces and reaction resulted in the formation of square holes on m-faces and rhombic holes on c-faces. These sites of nucleation were identified [211] as points of intersection of line dislocations with an external boundary face and the kinetic implications of the observed mode of nucleation and growth have been discussed [211]. [Pg.26]

Two alternative methods have been used in kinetic investigations of thermal decomposition and, indeed, other reactions of solids in one, yield—time measurements are made while the reactant is maintained at a constant (known) temperature [28] while, in the second, the sample is subjected to a controlled rising temperature [76]. Measurements using both techniques have been widely and variously exploited in the determination of kinetic characteristics and parameters. In the more traditional approach, isothermal studies, the maintenance of a precisely constant temperature throughout the reaction period represents an ideal which cannot be achieved in practice, since a finite time is required to heat the material to reaction temperature. Consequently, the initial segment of the a (fractional decomposition)—time plot cannot refer to isothermal conditions, though the effect of such deviation can be minimized by careful design of equipment. [Pg.41]

While there have been many non-isothermal studies of the decompositions of lanthanide oxalates, fewer detailed kinetic investigations have been reported. The anhydrous salts are difficult to prepare. La, Pr and Nd oxalates decompose [1097] to the oxide with intervention of a stable oxycarbonate, but no intermediate was detected during decomposition of the other lanthanide oxalates. The product CO disproportionates exten-... [Pg.223]

There is an extensive literature devoted to the preparation and structure determination of coordination compounds. Thermal analysis (Chap. 2, Sect. 4) has been widely and successfully applied in determinations [1113, 1114] of the stoichiometry and thermochemistry of the rate processes which contribute to the decompositions of these compounds. These stages may overlap and may be reversible, making non-isothermal kinetic data of dubious value (Chap. 3, Sect. 6). There is, however, a comparatively small number of detailed isothermal kinetic investigations, together with supporting microscopic and other studies, of the decomposition of coordination compounds which yields valuable mechanistic information. [Pg.231]

Experimental techniques used in the kinetic investigation of solid decompositions (described in Chap. 2) may need modification for the study of rate processes which yield no gaseous products. Measurements... [Pg.250]

The investigators studied various blends of the three polymers in order to control the rate of chain scission and thus influence the induction period and onset of drug release. None of the blends provided the desired 1-week zero-order kinetics. However, blends of different microsphere types did show promise in vitro (88). [Pg.20]

More recent detailed kinetic investigations have revealed that actinonin is a time-dependent, essentially irreversible, inhibitor of PDF enzymatic activity [72]. This study demonstrated that the kinetics of inhibition of... [Pg.121]

Schwille, P., Bieschke, J. and Oehlenschlager, F. (1997). Kinetic investigations by fluorescence correlation spectroscopy The analytical and diagnostic potential of diffusion studies. Biophys. Chem. 66, 211-28. [Pg.64]

The main drawback of these kinetic studies is that the kinetic measurements were carried out in a narrow temperature range (generally, 20°-30°C). However, the study in Reference (337) remains the only direct kinetic investigation of [3 + 2]-cycloaddition of nitronates to the C,C double bond. [Pg.586]

Catalytic studies and kinetic investigations of rhodium nanoparticles embedded in PVP in the hydrogenation of phenylacetylene were performed by Choukroun and Chaudret [90]. Nanoparticles of rhodium were used as heterogeneous catalysts (solventless conditions) at 60 °C under a hydrogen pressure of 7 bar with a [catalyst]/[substrate] ratio of 3800. Total hydrogenation to ethylbenzene was observed after 6 h of reaction, giving rise to a TOF of 630 h 1. The kinetics of the hydrogenation was found to be zero-order with respect to the al-kyne compound, while the reduction of styrene to ethylbenzene depended on the concentration of phenylacetylene still present in solution. Additional experi-... [Pg.239]

Disulphur decafluoride is thermally less stable than sulphur hexafluoride. Its tendency to react with glass and mercury precludes kinetic investigations in conventional pyrex apparatus, but Trost and McIntosh172 have studied the thermal decomposition in a copper vessel fitted with a diaphragm manometer. Within the experimental error of + 3 % the stoichiometry of the reaction was... [Pg.190]

The Dotz reaction mechanism has received further support from kinetic and theoretical studies. An early kinetic investigation [37] and the observation that the reaction of the metal carbene with the alkyne is supressed in the presence of external carbon monoxide [38] indicated that the rate-determining step is a reversible decarbonylation of the original carbene complex. Additional evidence for the Dotz mechanistic hyphotesis has been provided by extended Hiickel molecular orbital [23, 24] and quantum chemical calculations [25],... [Pg.274]


See other pages where Kinetic investigations studies is mentioned: [Pg.224]    [Pg.81]    [Pg.119]    [Pg.144]    [Pg.145]    [Pg.175]    [Pg.251]    [Pg.214]    [Pg.266]    [Pg.285]    [Pg.691]    [Pg.34]    [Pg.135]    [Pg.191]    [Pg.33]    [Pg.691]    [Pg.299]    [Pg.339]    [Pg.182]    [Pg.89]    [Pg.297]    [Pg.112]    [Pg.489]    [Pg.31]    [Pg.258]    [Pg.27]    [Pg.110]    [Pg.209]    [Pg.2]    [Pg.31]    [Pg.32]    [Pg.59]    [Pg.701]    [Pg.186]   


SEARCH



Investigations, kinetic

Investigative studies

Kinetic studies

Kinetics investigations

Kinetics investigations Kinetic studies

Kinetics, studies

© 2024 chempedia.info