Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics, nucleation investigations

Some limitations of optical microscopy were apparent in applying [247—249] the technique to supplement kinetic investigations of the low temperature decomposition of ammonium perchlorate (AP), a particularly extensively studied solid phase rate process [59]. The porous residue is opaque. Scanning electron microscopy showed that decomposition was initiated at active sites scattered across surfaces and reaction resulted in the formation of square holes on m-faces and rhombic holes on c-faces. These sites of nucleation were identified [211] as points of intersection of line dislocations with an external boundary face and the kinetic implications of the observed mode of nucleation and growth have been discussed [211]. [Pg.26]

The characteristic feature of solid—solid reactions which controls, to some extent, the methods which can be applied to the investigation of their kinetics, is that the continuation of product formation requires the transportation of one or both reactants to a zone of interaction, perhaps through a coherent barrier layer of the product phase or as a monomolec-ular layer across surfaces. Since diffusion at phase boundaries may occur at temperatures appreciably below those required for bulk diffusion, the initial step in product formation may be rapidly completed on the attainment of reaction temperature. In such systems, there is no initial delay during nucleation and the initial processes, perhaps involving monomolec-ular films, are not readily identified. The subsequent growth of the product phase, the main reaction, is thereafter controlled by the diffusion of one or more species through the barrier layer. Microscopic observation is of little value where the phases present cannot be unambiguously identified and X-ray diffraction techniques are more fruitful. More recently, the considerable potential of electron microprobe analyses has been developed and exploited. [Pg.37]

Hill et al. [117] extended the lower end of the temperature range studied (383—503 K) to investigate, in detail, the kinetic characteristics of the acceleratory period, which did not accurately obey eqn. (9). Behaviour varied with sample preparation. For recrystallized material, most of the acceleratory period showed an exponential increase of reaction rate with time (E = 155 kJ mole-1). Values of E for reaction at an interface and for nucleation within the crystal were 130 and 210 kJ mole-1, respectively. It was concluded that potential nuclei are not randomly distributed but are separated by a characteristic minimum distance, related to the Burgers vector of the dislocations present. Below 423 K, nucleation within crystals is very slow compared with decomposition at surfaces. Rate measurements are discussed with reference to absolute reaction rate theory. [Pg.191]

A. R. Nerheim, E. K. Samuelson, and T. M. Svartaas. Investigation of hydrate kinetics in the nucleation and early growth phase by laser light scattering. In Proceedings Volume, volume 1, pages 620-627. 2nd Soc Offshore Polar Eng et al Offshore Polar Eng Int Conf (San Francisco, CA, 6/14-6/19), 1992. [Pg.440]

A rate enhancement effect due to secondary nucleation has been identified in the solution-mediated transformation of the 7-phase of (i)-glutamic acid to its / -phase [82]. In this study, the kinetics of the polymorphic transition were studied using optical microscopy combined with Fourier transform infrared, Raman, and ultraviolet absorption spectroscopies. The crystallization process of n-hexatriacontane was investigated using micro-IR methodology, where it was confirmed that single... [Pg.273]

The kinetics of CO oxidation from HClOi, solutions on the (100), (111) and (311) single crystal planes of platinum has been investigated. Electrochemical oxidation of CO involves a surface reaction between adsorbed CO molecules and a surface oxide of Pt. To determine the rate of this reaction the electrode was first covered by a monolayer of CO and subsequently exposed to anodic potentials at which Pt oxide is formed. Under these conditions the rate of CO oxidation is controlled by the rate of nucleation and growth of the oxide islands in the CO monolayer. By combination of the single and double potential step techniques the rates of the nucleation and the island growth have been determined independently. The results show that the rate of the two processes significantly depend on the crystallography of the Pt surfaces. [Pg.484]

Aspartame is relatively unstable in solution, undergoing cyclisation by intramolecular self-aminolysis at pH values in excess of 2.0 [91]. This follows nucleophilic attack of the free base N-terminal amino group on the phenylalanine carboxyl group resulting in the formation of 3-methylenecarboxyl-6-benzyl-2, 5-diketopiperazine (DKP). The DKP further hydrolyses to L-aspartyl-L-phenyl-alanine and to L-phenylalanine-L-aspartate [92]. Grant and co-workers [93] have extensively investigated the solid-state stability of aspartame. At elevated temperatures, dehydration followed by loss of methanol and the resultant cyclisation to DKP were observed. The solid-state reaction mechanism was described as Prout-Tompkins kinetics (via nucleation control mechanism). [Pg.38]

Several investigators have offered various techniques for estimating crystallization growth and nucleation parameters. Parameters such as kg, 6, and ki are the ones usually estimated. Often different results are presented for identical systems. These discrepancies are discussed by several authors (13,14). One weakness of most of these schemes is that the validity of the parameter estimates, i.e., the confidence in the estimates, is not assessed. This section discusses two of the more popular routines to evaluate kinetic parameters and introduces a method that attempts to improve the parameter inference and provide a measure of the reliability of the estimates. [Pg.104]

Literature has revealed limited kinetic data on secondary nucleation of alumina trihydrate in the precipitator of the Bayer Process for alumina production. A batch agitated, isothermal, three litre crystallizer was used in the study. A Coulter-Counter was utilized as the particle sizing equipment. The effects of seed density, supersaturation and temperature on secondary nucleation were investigated. Maximum nucleation rates were found to occur at about 70 C and for any crystallization temperature, the nucleation rate passed through a maximum. The correlated equation for the effective secondary nucleation rate of alumina trihydrate is... [Pg.329]

The cadmium electrodeposition on the solid cadmium electrode from the sulfate medium was investigated [217]. The following kinetic parameters were obtained cathodic transfer coefficient a = 0.65, exchange current density Iq = 3.41 mA cm , and standard rate constant kg = 8.98 X 10 cm s . The electrochemical deposition of cadmium is a complex process due to the coexistence of the adsorption and nucleation process involving Cd(II) species in the adsorbed state. [Pg.782]

In discussing the mechanisms of the formation of monodispersed colloids by precipitation in homogeneous solutions, it is necessary to consider both the chemical and physical aspects of the processes involved. The former require information on the composition of all species in solution, and especially of those that directly lead to the solid phase formation, while the latter deal with the nucleation, particle growth, and/or aggregation stages of the systems under investigation. In both instances, the kinetics of these processes play an essential role in defining the properties of the final products. [Pg.7]

Nucleation and Growth (Round 1). Phase transformations, such as the solidification of a solid from a liquid phase, or the transformation of one solid crystal form to another (remember allotropy ), are important for many industrial processes. We have investigated the thermodynamics that lead to phase stability and the establishment of equilibrium between phases in Chapter 2, but we now turn our attention toward determining what factors influence the rate at which transformations occur. In this section, we will simply look at the phase transformation kinetics from an overall rate standpoint. In Section 3.2.1, we will look at the fundamental principles involved in creating ordered, solid particles from a disordered, solid phase, termed crystallization or devitrification. [Pg.221]

Breck (1) was the first to investigate the reaction in the hydrothermal formation of zeolites. He found that there is always some delay before crystallization starts. This so-called induction period can be reduced by raising the temperature or alkalinity of the reaction batch (2). As Sand (8) reported in 1968 in connection with the formation of mordenite, the nature of the Si02 material also has a decisive influence on the reaction and the nature of the zeolite crystals. The induction period as a nucleation phase is discussed by Domine and Quobex (4) in connection with kinetic investigations relating to mordenite formation. [Pg.173]


See other pages where Kinetics, nucleation investigations is mentioned: [Pg.190]    [Pg.89]    [Pg.475]    [Pg.177]    [Pg.239]    [Pg.451]    [Pg.101]    [Pg.56]    [Pg.193]    [Pg.10]    [Pg.120]    [Pg.141]    [Pg.145]    [Pg.165]    [Pg.261]    [Pg.285]    [Pg.82]    [Pg.353]    [Pg.273]    [Pg.30]    [Pg.87]    [Pg.187]    [Pg.239]    [Pg.485]    [Pg.237]    [Pg.87]    [Pg.206]    [Pg.165]    [Pg.261]    [Pg.10]    [Pg.365]    [Pg.372]    [Pg.896]    [Pg.898]    [Pg.467]    [Pg.487]    [Pg.223]    [Pg.451]   
See also in sourсe #XX -- [ Pg.144 , Pg.145 ]




SEARCH



Investigations, kinetic

Kinetic nucleation

Kinetics investigations

© 2024 chempedia.info