Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic data measurements

Organonickel(II) species are believed to be formed during the reaction between [Ni(TMC)] and primary alkyl halides, and subsequently undergo hydrolysis with cleavage of the Ni—C bond. Kinetic data measured in the presence of excess alkyl halide indicate a rate law -dlNi1 (TMC)+]/cft = MNi (TMCr][RX]. The rate constants increase for R and X in the order methyl < primary < secondary < allyl < benzyl halides and Cl < Br < I (133, 140). This suggests that the rate-determining step is electron transfer from the Ni(I) complex to R—X via an inner-sphere atom-transfer mechanism (143). [Pg.140]

Here, we report kinetic data measured during the ion-exchange process in the NH4 -Ni2+ system in the sample CMT-C [5,37], CMTC-C was obtained from deposits located in Tasajeras, Cuba (see Table 4.1) [5], The parameters characterizing the kinetics of ion exchange of NH4 and Ni2+ in the sample CMT-C [5,37], that is, R, De and the TEC, are reported in Table 7.3. [Pg.353]

Hence, different sets of kinetic data, measured for different temperature or concentration ranges, yield different values for n and m. Therefore, if kinetic data or rate equations are obtained (e.g. from the literature), one should always ascertain that the region to which the kinetic data will be applied has indeed been explored experimentally. Extrapolation of kinetic data is generally impossible or very dangerous at least. [Pg.11]

As mentioned above no adsorption of CO is observed at around room temperature. When both reactants, O2 and CO, are introduced into the ion trap, the reaction kinetics of Au2 changes drastically, as seen by the offset in the Au2 signal. This offset increases when the partial pressure of CO is augmented. In addition, at temperatures below 200 K the intermediate with the stoichiometry Au2(C0)02 could be isolated (Figure 17.2A-b). The ion stoichiometry clearly shows that CO and O2 are able to coadsorb onto an Au2 dimer. From the kinetics of all observable ions, Au2, Au202, and Au2(C0)02, measured under a multitude of different reaction conditions the catalytic conversion of CO to CO2 could unambiguously be detected. The reaction mechanism that fulfills all the prerequisites and fits all kinetic data measured under all the different reaction conditions could be described by the reaction equations below ... [Pg.557]

For rate processes in which the Arrhenius parameters are independent of reaction conditions, it may be possible to interpret the magnitudes of A and ii, to provide insights into the chemical step that controls the reaction rates. However, for a number of reversible dissociations (such as CaCOj, Ca(OH)2, LijSO Hp, etc.) compensation behaviour has been foimd in the pattern of kinetic data measured for the same reaction proceeding under different experimental conditions. These observations have been ascribed to the influence of procedural variables such as sample masses, pressure, particle sizes, etc., that affect the ease of heat transfer in the sample and the release of volatile products. The various measured values of A and cannot then be associated with a particular rate controlling step. Galwey and Brown [52] point out that few studies have been specifically directed towards studying compensation phenomena. However, many instances of compensation behaviour have been recognized as empirical correlations applicable to kinetic data... [Pg.130]

Kinetic data measured for the decomposition of calcium carbonate under isothermal and under programmed-temperature conditions [11] and varied reaction environments influencing the ease of removal of the CO2 product, show that the apparent values of the kinetic parameters k, A and may be influenced by sample heating rate, reactant self-cooling, sample mass, geometry and particle size, which determine the rate because of the reversible nature of the decomposition [12]. These effects can lead to compensation behaviour [13]. [Pg.347]

Ester hydrolysis of 4 -acetoxyphenylazobenzenesulfonate (47) was considerably enhanced by the Ni(II) or Zn(II) complex of 46 or its analogue prepared by random functionalization. Analysis of the kinetic data measured at various pHs revealed that kgg, for 46 = 1-4 x 10" s ) was 3-6 times greater than that for its analogue... [Pg.266]

Eq. (47) was used for a simultaneous fit of all kinetic data measured under initial rate conditions (Figs. 7-19 and 7-20). Separate fitting of each curve gives a better coincidence in every single case, but the optimized kinetic parameter will vary from fit to fit. [Pg.228]

Instead of time consuming isothermal experiments (or the use of the vague value of the critical operation temperature should be estimated by extrapolation of kinetic data measured at T > if the decomposition kinetics are well known... [Pg.109]

Herein is the rate constant for a dienophile with substituent x ko is the corresponding rate constant for unsubstituted 2,4c Ox is the substituent constant for substituent x and p is the reaction constant, defined as the slope of the plot of log (k / ko) versus Ox. The parameter p is a measure of the sensitivity of the reactions towards introduction of substituents. Figure 2.3 and Table 2.4 show the results of correlating the kinetic data for the reaction of 2.4a-e with 2.5 with a. ... [Pg.55]

The nitration of phenylpyridines and related compounds has attracted attention for a long time, and measurements of isomer proportions have been made for several compounds of this type. Nitration occurs in the phenyl ring. For 2-phenylpyridine and 2-phenylpyridine i-oxide measurements of the dependence of rate of nitration upon acidity in 75-81 % sulphuric acid at 25 °C show that both compounds are nitrated as their cations (table 8.1). The isomer distribution did not depend significantly upon the acidity, and by comparison with the kinetic data for quinolinium ( 10.4.2) the partial rate factors illustrated below were obtained.They should be compared with those for the nitration of 2-nitrobiphenyl ( 10.1). The protonated heterocyclic groups are much... [Pg.206]

Cropley made general recommendations to develop kinetic models for compUcated rate expressions. His approach includes first formulating a hyperbolic non-linear model in dimensionless form by linear statistical methods. This way, essential terms are identified and others are rejected, to reduce the number of unknown parameters. Only toward the end when model is reduced to the essential parts is non-linear estimation of parameters involved. His ten steps are summarized below. Their basis is a set of rate data measured in a recycle reactor using a sixteen experiment fractional factorial experimental design at two levels in five variables, with additional three repeated centerpoints. To these are added two outlier... [Pg.140]

Kinetic data provide information only about the rate-determining step and steps preceding it. In the hypothetical reaction under consideration, the final step follows the rate-determining step, and because its rate will not affect the rate of the overall reaction, will not appear in the overall rate expression. The rate of the overall reaction is governed by the second step, which is the bottleneck in the process. The rate of this step is equal to A2 multiplied by the molar concentration of intermediate C, which may not be directly measurable. It is therefore necessary to express the rate in terms of the concentrations of reactants. In the case under consideration, this can be done by recognizing that [C] is related to [A] and [B] by an equilibrium constant ... [Pg.194]

Evidence that cleavage of 1,2-diols by HIO4 occurs through a five-membered cyclic periodate intermediate is based on kinetic data—the measurement of reaction rates. When diols A and B were prepared and the rates of their reaction with HIO4 were measured, it was found that diol A cleaved approximately 1 million times faster than diol B. Make molecular models of A and B and of potential cyclic periodate intermediates, and then explain the kinetic results. [Pg.257]

The development of methods for the kinetic measurement of heterogeneous catalytic reactions has enabled workers to obtain rate data of a great number of reactions [for a review, see (1, )]. The use of a statistical treatment of kinetic data and of computers [cf. (3-7) ] renders it possible to estimate objectively the suitability of kinetic models as well as to determine relatively accurate values of the constants of rate equations. Nevertheless, even these improvements allow the interpretation of kinetic results from the point of view of reaction mechanisms only within certain limits ... [Pg.1]

Various investigators have tried to obtain information concerning the reaction mechanism from kinetic studies. However, as is often the case in catalytic studies, the reproducibility of the kinetic measurements proved to be poor. A poor reproducibility can be caused by many factors, including sensitivity of the catalyst to traces of poisons in the reactants and dependence of the catalytic activity on storage conditions, activation procedures, and previous experimental use. Moreover, the activity of the catalyst may not be constant in time because of an induction period or of catalyst decay. Hence, it is often impossible to obtain a catalyst with a constant, reproducible activity and, therefore, kinetic data must be evaluated carefully. [Pg.160]

The writer (Ref 8a) detd explosion times of Petrin rapidly heated in small stainless steel tubes (Wenograd test). The measurement scatter was too large to obtain reliable kinetic data. [Pg.563]

The second test for the mechanism shown in Scheme 8-8 is to apply equation (c) to (8-10) with kinetic data for dediazoniations with varying concentrations [N2] of molecular nitrogen. As the solubility of N2 is quite low in most solvents, kinetic measurements must be made under N2 pressure. The dediazoniation reaction has a... [Pg.171]

Methods of EGA using selective sorption, condensation of effluent gases, infrared absorption and thermoparticulate analysis have been reviewed by Lodding [144]. The use of simple gas burette systems should not be forgotten and an Orsat gas analysis apparatus can provide useful measurements in studies of the decomposition of formates [169]. Problems have been encountered in the determination of water released Kiss et al. [170—172] have measured the formation of this compound from infrared analyses of the acetylene evolved following reaction of water with calcium carbide. Kinetic data may be obtained by wet methods ammonia, determined by titration after absorption in an aqueous solution, has been used to measure a—time values for the decomposition of ammonium salts in a fluidized bed [173],... [Pg.23]

Isothermal and non-isothermal measurements of enthalpy changes [76] (DTA, DSC) offer attractive experimental approaches to the investigation of rate processes which yield no gaseous product. The determination of kinetic data in non-isothermal work is, of course, subject to the reservations inherent in the method (see Chap. 3.6). [Pg.38]

Product yields may also be determined by magnetic measurements, as in the formation of ferrites [340], where kinetic data were obtained at reaction temperature. Quantitative applications of Mossbauer spectroscopy have also been described [326]. [Pg.38]

The account of the formal derivation of kinetic expressions for the reactions of solids given in Sect. 3 first discusses those types of behaviour which usually generate three-dimensional nuclei. Such product particles may often be directly observed. Quantitative measurements of rates of nucleation and growth may even be possible, thus providing valuable supplementary evidence for the analysis of kinetic data. Thereafter, attention is directed to expressions based on the existence of diffuse nuclei or involving diffusion control such nuclei are not susceptible to quantitative... [Pg.48]

Available kinetic data are seldom of sufficiently high quality to warrant the application of high precision statistical treatment. This point is made forcefully by Churchill [495] who states Our ability and inclination to postulate and construct models appear to exceed our ability and inclination to obtain good rate data. Improvement in rate correlations will come primarily from more and better measurements rather than from improvements in modelling or mathematical procedures. ... [Pg.83]

Innumerable experimental rate measurements of many kinds have been shown to obey the Arrhenius equation (18) or the modified form [k = A T exp (—E/RT)] and, irrespective of any physical significance of the parameters A and E, the approach is an important, established method of reporting and comparing kinetic data. There are, however, grounds for a critical reconsideration for both the methods of application and the theoretical interpretations of observed obedience of experimental data for the reactions of solids to eqn. (18). [Pg.87]


See other pages where Kinetic data measurements is mentioned: [Pg.102]    [Pg.287]    [Pg.358]    [Pg.159]    [Pg.430]    [Pg.273]    [Pg.102]    [Pg.287]    [Pg.358]    [Pg.159]    [Pg.430]    [Pg.273]    [Pg.1933]    [Pg.2966]    [Pg.72]    [Pg.507]    [Pg.507]    [Pg.199]    [Pg.192]    [Pg.183]    [Pg.441]    [Pg.32]    [Pg.187]    [Pg.364]    [Pg.584]    [Pg.100]    [Pg.17]    [Pg.24]    [Pg.30]    [Pg.88]   
See also in sourсe #XX -- [ Pg.385 , Pg.386 , Pg.387 ]




SEARCH



Kinetic measurement

Kinetics measurements

Measurement data

© 2024 chempedia.info