Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isopropanol effects

Addition of isopropanol 20 vol.% leads to a general increase of the performances, allowing for the dehvery of a maximum photocurrent density of 300 pA/cm in the case of 1. The photoanodic current (Fig. 14a) increases in the order 3 < 2 < 1, in agreement with the relative Ru(II)/Ru(III) oxidation potentials. The photocurrent transients collected in the presence of a 0 mV vs SCE potential bias (Fig. 14b) approach a more ideal rectangidar shape, although both the initial relaxation and the cathodic features are stiU evident. These latter features are, however, barely observable, indicating that isopropanol effectively acts as an electron donor, promoting Ru(III) reduction. [Pg.52]

Water-.soluble alcohols present a slightly po.sitive function, i.e.. their addition increases the hydrophilidiy of the surfaciantfalcoho amphiphile. but very liiilc indeed. As a consequence isopropanol effect in the correlation is negative, i.e, the same as decreasing salinity, 5CC-Butanol and /en-pentanol have practically no tormulation effect since their functions are essentially nil whatever the concentration. These arc the alcohols that are the more interface-seeking ones, and their miiin effect is to dilute the surfactant adsorption density without changing the formulation. [Pg.52]

Equation 4 can be classified as S, , ie, substitution nucleophilic bimolecular (221). The rate of the reaction is influenced by several parameters basicity of the amine, steric effects, reactivity of the alkylating agent, and solvent polarity. The reaction is often carried out in a polar solvent, eg, isopropanol, which may increase the rate of reaction and make handling of the product easier. [Pg.380]

Membrane Pervaporation Since 1987, membrane pei vapora-tion has become widely accepted in the CPI as an effective means of separation and recovery of liquid-phase process streams. It is most commonly used to dehydrate hquid hydrocarbons to yield a high-purity ethanol, isopropanol, and ethylene glycol product. The method basically consists of a selec tively-permeable membrane layer separating a liquid feed stream and a gas phase permeate stream as shown in Fig. 25-19. The permeation rate and selectivity is governed bv the physicochemical composition of the membrane. Pei vaporation differs From reverse osmosis systems in that the permeate rate is not a function of osmotic pressure, since the permeate is maintained at saturation pressure (Ref. 24). [Pg.2194]

The influence of NH., and CO, on the chromatographic behaviour of benzoic acid and its derivatives (o-, m-, p-hydroxybenzoic, nitrobenzoic, aminobenzoic, chlorobenzoic acids) was studied. The work was carried out by means of upgoing TLC on Sorbfil plates. Isopropanol- and ethyl acetate-containing water-organic eluents were used as mobile phases in the absence or presence of gaseous modifiers in the MP. The novel modification of TLC has been found to separate benzoic acids with different values of their dissociation constants more effectively than water-organic mobile phases. [Pg.99]

The extent of coupling is also influenced by the solvent. In the hydrogenation of aniline over ruthenium oxide, coupling decreased with solvent in the order methanol > ethanol > isopropanol > t-butanol. The rate was also lower in the lower alcohols, probably owing to the inhibiting effect of greater concentrations of ammonia (44). Carboxylic acid solvents increase the amount of coupling (42). [Pg.125]

In 212 cc of water are mixed 21.2 grams (0.112 mol) of N-(benzylidene)-3-amino-2-oxa-zolidone, 8.93 grams of concentrated sulfuric acid, and 30.1 grams (0.124 mol) of 5-ni-tro-2-furaldehyde diacetate. This mixture is heated to effect the hydrolysis of N-(benzy-lidene)-3-amino-2-oxazolidone, steam distillation of the benzaldehyde and hydrolysis of 5-nitro-2-furaldehyde diacetate. Approximately IV2 hours are required for this reaction to take place. When the bulk of the benzaldehyde has been removed, 50 cc of 99% isopropanol are added, the reaction mixture is refluxed a short time, and the crystals of N-(5-nitro-2-furfurylidene)-3-amino-2-oxazolidone are filtered from the hot suspension. The product is washed with water and isopropanol and dried a yield of 23.3 grams, 92.8% based on N-(benzylidene)-3-amino-2-oxazolidone of MP 254° to 256°C is obtained, according to U.S. Patent 2,759,931. [Pg.709]

We also studied the effect of initiator on the dispersion polymerization of styrene in alcohol-water media by using a shaking reactor system [89]. We used AIBN and polyacrylic acid as the initiator and the stabilizer, respectively. Three different homogenous dispersion media including 90% alcohol and 10% water (by volume) were prepared by using isopropanol, 1-butanol, and 2-... [Pg.203]

We have also examined the effect of stabilizer (i.e., polyacrylic acid) on the dispersion polymerization of styrene (20 ml) initiated with AIBN (0.14 g) in an isopropanol (180 ml)-water (20 ml) medium [93]. The polymerizations were carried out at 75 C for 24 h, with 150 rpm stirring rate by changing the stabilizer concentration between 0.5-2.0 g/dL (dispersion medium). The electron micrographs of the final particles and the variation of the monomer conversion with the polymerization time at different stabilizer concentrations are given in Fig. 12. The average particle size decreased and the polymerization rate increased by the increasing PAAc concentra-... [Pg.205]

Lu et al. [86] also studied the effect of initiator concentration on the dispersion polymerization of styrene in ethanol medium by using ACPA as the initiator. They observed that there was a period at the extended monomer conversion in which the polymerization rate was independent of the initiator concentration, although it was dependent on the initiator concentration at the initial stage of polymerization. We also had a similar observation, which was obtained by changing the AIBN concentration in the dispersion polymerization of styrene conducted in isopropanol-water medium. Lu et al. [86] proposed that the polymerization rate beyond 50% conversion could be explained by the usual heterogenous polymer kinetics described by the following equation ... [Pg.210]

The uncertainty of calculating the Poiseuille number from the measurements must be taken into account. The viscosity-pressure relationship of certain liquids (e.g., isopropanol, carbon tetrachloride) must be kept in mind to obtain the revised theoretical flow rate. The effect of evaporation from the collection dish during the mass flow rate measurement must be taken into consideration. The effect of evaporation of collected water into the room air may not be negligible, and due to the extremely low mass flow rates through the micro-channel this effect can become significant. [Pg.138]

The effect of viscous dissipation on temperature change along the micro-channel axis is illustrated in Fig. 4.11, where the dependences dT),/ dx on d that correspond to water and isopropanol flows are presented. One can see that under the conditions corresponding to the Judy et al. (2002) experiments = 74.1 pm, L = 114 mm, Ljd = 1,543), the rise of bulk temperature due to viscous dissipation is small enough. So, at d > 100 pm the temperature gradient is dT),/ dx < 1 K/m. In this case, the difference between outlet and inlet temperature is about 0.1 K. Under conditions that are typical for micro-channels of electronic devices L/d r j 102) this difference is about 0.01 K. The rise of temperature due to viscous dissipation is small enough even at water flow in micro-channels with d 20 pm. Thus, for micro-channels with d = 20 pm and L/d = 10, we have Tout — Tin 0.8 K. [Pg.164]

Nanoparticles of the semicondnctor titanium dioxide have also been spread as mono-layers [164]. Nanoparticles of TiOi were formed by the arrested hydrolysis of titanium iso-propoxide. A very small amount of water was mixed with a chloroform/isopropanol solution of titanium isopropoxide with the surfactant hexadecyltrimethylammonium bromide (CTAB) and a catalyst. The particles produced were 1.8-2.2 nm in diameter. The stabilized particles were spread as monolayers. Successive cycles of II-A isotherms exhibited smaller areas for the initial pressnre rise, attributed to dissolution of excess surfactant into the subphase. And BAM observation showed the solid state of the films at 50 mN m was featureless and bright collapse then appeared as a series of stripes across the image. The area per particle determined from the isotherms decreased when sols were subjected to a heat treatment prior to spreading. This effect was believed to arise from a modification to the particle surface that made surfactant adsorption less favorable. [Pg.89]

Use ofa hygienic hand rub, in which a suitable disinfectant or disinfectant-detergent is rubbed into dry hands for not more than 30 seconds. A suitable test method is to compare a product with a standard (70% ethanol or 60% isopropanol) the product must not be less effective than the standard. [Pg.241]

The resolution of the overall reaction into steps implied by the steric effect (above) has been achieved" for the oxidation of isopropanol. In 97% aqueous acetic acid a rapid reaction, ic2 x 1.25x10 l.mole . sec (15 °C, p = 0.183 Af NaC104), which is unaffected by deuteration, precedes the oxidation. Evidence for an intermediate has been reported for the oxidation of 1,1,1-tri-fluoro-2-propanol at very high acidities . [Pg.302]

These results do not prove that the ester is an essential intermediate in aqueous solution even though it is present, but the result with the hindred triterpene is convincing In this case the esterification step, which is normally fast, has become rate-determining and the disappearance of the isotope effect must mean that C-H cleavage occurs after the formation of the ester and not independently of it. The generality of this result is apparent from the stopped-flow investigation of isopropanol oxidation ... [Pg.304]

Interest has been shown by several groups on the effect of solvent and of added anions upon the oxidation of alcohols. The oxidation of isopropanol proceeds 2500 times faster in 86.5 % acetic acid than in water at the same hydrogen ion concentration . The kinetics and primary kinetic isotope effect are essentially the same as in water. Addition of chloride ion strongly inhibits the oxidation and the spectrum of chromic acid is modified. The effect of chloride ion was rationalised in terms of the equilibrium,... [Pg.305]

The effect of adding large quantities of acetic acid to the medium is more complicated. The acceleration of the oxidation rate of isopropanol was ascribed initially to a shift of the esterification equilibrium to the right (reaction 29). However, RoCek found that acceleration by acetic acid occurs for oxidations which cannot involve a pre-equilibrium esterification, e.g. those of aliphatic and alicyclic hydrocarbons. The obvious alternative, i.e. that acetic acid combines with chromic acid, viz. [Pg.306]

Of relevance also is the effect on chromic acid oxidation of aqueous isopropanol of systematically replacing water by acetone . Most parameters, including the... [Pg.306]

Two studies have been performed by Littler on the oxidation of cyclohexanol by Hg(II), the second leading to more detailed and reliable data. The reaction is first-order in both oxidant and substrate but the rate is independent of acidity. E is 24.8 kcal.mole AS is 1 eu, Ath/Acd is 3.0 and ko ol HzO 1-30-At 50 °C di-isopropyl ether is attacked at about one-half the rate of isopropanol, which implies that hydride ion abstraction is occurring in both cases. This is supported in the case of cyclohexanol by the isotope effects. [Pg.344]

Braga et al. ° compared the efficiencies of several processes, i.e., hydrodistillation, low pressnre solvent extraction, and Soxhlet and supercritical fluid extraction. For each process, the inflnences of several parameters (duration, temperature, nature of solvent) were also evalnated. These authors concluded that the Soxhlet method performed with ethanol/isopropanol 1/100 v/v for 2 hr and 30 min was the most effective. Snn et al. nsed solid phase extraction to concentrate (nine times) a... [Pg.78]

Certain other metal ions also exhibit catalysis in aqueous solution. Two important criteria are rate of ligand exchange and the acidity of the metal hydrate. Metal hydrates that are too acidic lead to hydrolysis of the silyl enol ether, whereas slow exchange limits the ability of catalysis to compete with other processes. Indium(III) chloride is a borderline catalysts by these criteria, but nevertheless is effective. The optimum solvent is 95 5 isopropanol-water. Under these conditions, the reaction is syn selective, suggesting a cyclic TS.63... [Pg.84]


See other pages where Isopropanol effects is mentioned: [Pg.496]    [Pg.496]    [Pg.139]    [Pg.116]    [Pg.117]    [Pg.118]    [Pg.299]    [Pg.44]    [Pg.163]    [Pg.48]    [Pg.49]    [Pg.204]    [Pg.207]    [Pg.207]    [Pg.209]    [Pg.21]    [Pg.208]    [Pg.162]    [Pg.166]    [Pg.873]    [Pg.404]    [Pg.405]    [Pg.303]    [Pg.306]    [Pg.214]    [Pg.338]    [Pg.230]    [Pg.212]    [Pg.288]   
See also in sourсe #XX -- [ Pg.351 ]




SEARCH



Isopropanol

© 2024 chempedia.info