Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isomer distribution product

Methylenecyclopentane has the less substituted double bond and is the major product The reported isomer distribution is 91% methylenecyclopentane and 9% 1 methylcyclopentene ... [Pg.939]

Butylenes. Butylenes are the primary olefin feedstock to alkylation and produce a product high in trimethylpentanes. The research octane number, which is typically in the range of 94—98, depends on isomer distribution, catalyst, and operating conditions. [Pg.47]

The effect of butene isomer distribution on alkylate composition produced with HF catalyst (21) is shown in Table 1. The alkylate product octane is highest for 2-butene feedstock and lowest for 1-butene isobutylene is intermediate. The fact that the major product from 1-butene is trimethylpentane and not the expected primary product dimethylhexane indicates that significant isomerization of 1-butene has occurred before alkylation. [Pg.47]

Process parameters can be varied to change the MDA isomer distribution and oligomeric content of PMDA products. Generally, aniline to formaldehyde molar ratios of 2 to 5 are used. To increase the MDA content, higher ratios of aniline to formaldehyde are employed. Increasing the acid to aniline ratio also increases the 4,4 -MDA content of the diamine fraction. Historically, the polyurethane industry consumes as much of the 4,4 -MDI isomer as possible. Recently, however, there has been an increasing demand for higher 2,4 -MDI and 2,4 -PMDI products to be used as replacements for... [Pg.249]

The characterizations of MDA and PMDA are similar to those normally used for aromatic amines. In the manufacture of PMDA, the MDA isomer distribution and the formation of side products is deterrnined primarily by gas chromatography (48,49). The amine content is deterrnined by acid titration... [Pg.250]

Unesterified tocopherols are found in a variety of foods however, concentration and isomer distribution of tocopherols vary gready with source. Typically, meat, fish, and dairy contain <40 mg/100 g of total tocopherols. Almost all (>75%) of this is a-tocopherol for most sources in this group. The variation in the content of meat and dairy products can be related to the content of the food ingested by the animal. A strong seasonal variation can also be observed. Vegetable oils contain significant levels of y-, P-, and 5-tocopherol, along with a-tocopherol (Table 3). [Pg.145]

The yield of product is dependent on concentration. An increase in the amount of acetonitrile in Part A to ca. 1000 ml increases the yield of the isomer mixture to 55-75% without affecting Isomer distribution- Further dilution to ca- 5000 mL increases the yield to 80-85%. [Pg.181]

This activation of the ortho position is most strikingly illustrated in the reactivity of 2,5-dimethylthiophene, which competitive experiments have shown to undergo the SnCb-catalyzed Friedel-Crafts reaction more rapidly than thiophene and even 2-methylthiophene. The influence of the reagent on the isomer distribution is evident from the fact that 2-methoxythiophene is formylated and bromi-nated (with A -bromosuccinimide) only in the 5-position. Similarly, although 3-bromo-2-methylthiophene has been detected in the bromi-nation of 2-methylthiophene with bromine, only the 5-isomer (besides some side-chain bromination) is obtained in the bromination of alkylthiophenes with A -bromosuccinimide. ° However, the mechanism of the latter type of bromination is not established. No lines attributable to 2-methyl-3-thiocyanothiophene or 2-methyl-3-chIoro-thiophene could be detected in the NMR spectra of the substitution products (5-isomers) obtained upon thiocyanation with thiocyanogen or chlorination with sulfuryl chloride. 2-Methyl- and 2-ethyl-thiophene give, somewhat unexpectedly, upon alkylation with t-butyl chloride in the presence of Feds, only 5-t-butyl monosubstituted and... [Pg.48]

The most accurate data on isomer distributions in alkylation of heterocycles have been obtained from the reaction of 3-n-butylpyridine with methyl radicals in acetic aeid. The ratio of the monomethyl products was determined by infrared spectroscopy and gas chromatography and is showm in (27). A small amount of 2,6-dimethyl-3-n-butylpyridine was also obtained. These ratios again show a high proportion of ortho substitution. [Pg.157]

In formulating liquid detergent products with LAS, the carbon chain distribution, phenyl isomer distribution, and DATS level can all contribute to the solubility and viscosity characteristics. Hydrotrope requirements for isotropic liquid detergents can vary widely for different types of commercial LAS. [Pg.119]

Similar results are obtained from incineration of polymeric materials with octabromo- and pentabromodiphenyl ether (refs. 11,12). The temperature with the maximum PBDF-yield depends on the kind of polymeric matrix. All three bromo ethers 1-2 give the same isomer distribution pattern with preference for tetrabrominated dibenzofiirans. The overall yield of PBDF is lower for incineration of pentabromobiphenyl ether 2, 4 % at 700°C compared to 29 % for ether 1 at 500 °C (ref. 12). The preferred formation of tetrabrominated fiirans observed at all temperatures cannot be a result of thermodynamic control of the cyclisation reaction it is likely due to the special geometry of the furnaces. One explanation is that a spontaneous reaction occurs at approximately 400°C while the pyrolysis products are transferred to the cooler zones of the reactor details can be found elsewhere (ref. 12). [Pg.372]

In this section, the reactivities of organosilicon compounds for the Friedel-Crafts alkylation of aromatic compounds in the presence of aluminum chloride catalyst and the mechanism of the alkylation reactions will be discus.sed, along with the orientation and isomer distribution in the products and associated problems such as the decomposition of chloroalkylsilanes to chlorosilanes.. Side reactions such as transalkylation and reorientation of alkylated products will also be mentioned, and the insertion reaction of allylsilylation and other related reactions will be explained. [Pg.146]

Nametkin and co-workers hrst reported the alkylation of benzene derivatives with allylchlorosilanes in the presence of aluminum chloride as catalyst. " 2-(Aryl)propylsilanes were obtained from the alkylation of substituted benzenes (Ph—X X = H, CL Br) with allylsilanes such as allyldichlorosilane and allyltrichlo-rosilane.The yields ranged from 34 to 66% depending upon the substituents on the benzene ring, but information concerning reaction rates and product isomer distribution was not reported. [Pg.150]

A detailed analysis of the LAB isomer distribution in this experiment is provided in Table 1. The results are very similar for LAB production from benzene/l-decene mixtures using the same batch procedures and equipment (see also Table 1). [Pg.332]

In all that has gone before a tacit assumption has been made that the proportions of alternative products formed in a reaction, e.g. o-, m- and p-isomers, are determined by their relative rates of formation, i.e. that the control is kinetic (p. 42). This is not, however, always what is observed in practice thus in the Friedel-Crafts alkylation of methyl-benzene (Me o-/p-directing) with benzyl bromide and GaBr3 (as Lewis acid catalyst) at 25°, the isomer distribution is found to be ... [Pg.163]

Even after a very short reaction time (001 sec) it is doubtful whether the isomer distribution (in the small amount of product that has as yet been formed) is purely kinetically controlled—the proportion of m-isomer is already relatively large—and after 10 sec it clearly is not m-benzyltoluene, the thermodynamically most stable isomer, predominating and the control now clearly being equilibrium or thermodynamic (p. 43). [Pg.163]

Isomer Distributions in Initial Products from Hydrogenolysis of Methylcyclopentane and from Isomerization of Hexanes over Platinum Catalysts ... [Pg.38]

An interesting feature of the cyclization of y, -unsaturated alcohols is the marked effect on product isomer distribution by the nature of substituents remote from the double bond (cf. 42 and Scheme 59).98 Complete stereospecificity is observed for the phenyl derivative 42a in contrast to 42b and c, and the isomer ratio is reversed for 42d. The suggested mechanism98 is shown in Scheme 60 the trisubstituted alkene (45) is mainly converted into a pyran (46) rather than a tetrahydrofuran derivative (Scheme 61). [Pg.347]

The rate was enhanced up to 2.6-fold for reaction of the 2-isomer and up to 14-fold for the 4-isomer. The product distribution in the final reaction mixtures was always somewhat different when microwave heating was used. The results were explained in terms of efficient interaction of microwaves with a highly polarized reagent molecule adsorbed on the acidic active site. Possible superheating of the active sites was difficult to detect (Sect. 10.3.3). [Pg.356]

Isomer distribution in product Olefin [PPh3] excess Temp. ------------------------- conversion... [Pg.31]

The isomer distribution of the nickel catalyst system in general is similar qualitatively to that of the Rh catalyst system described earlier. However, quantitatively it is quite different. In the Rh system the 1,2-adduct, i.e., 3-methyl-1,4-hexadiene is about 1-3% of the total C6 products formed, while in the Ni system it varies from 6 to 17% depending on the phosphine used. There is a distinct trend that the amount of this isomer increases with increasing donor property of the phosphine ligands (see Table X). The quantity of 3-methyl-1,4-pentadiene produced is not affected by butadiene conversion. On the other hand the formation of 2,4-hexadienes which consists of three geometric isomers—trans-trans, trans-cis, and cis-cis—is controlled by butadiene conversion. However, the double-bond isomerization reaction of 1,4-hexadiene to 2,4-hexadiene by the nickel catalyst is significantly slower than that by the Rh catalyst. Thus at the same level of butadiene conversion, the nickel catalyst produces significantly less 2,4-hexadiene (see Fig. 2). [Pg.308]

Acyclic dienes also undergo the palladium-catalyzed cyclization with the Mn02/BQ oxidation system22. Thus, simple 1,5-hexadiene afforded a 72% isolated yield of cyclized products 18, 19 and 20, with an isomer distribution of 65 25 10, respectively (equation 8). In general, the selectivity and/or yield was lower for the acyclic dienes. [Pg.659]

The distributions of products within a certain carbon number fraction are far from equilibrium. In the Cg-fraction, for example, the dimethylhexanes would be thermodynamically favored over the trimethylpentanes, but the latter are predominant. The distribution within the trimethylpentanes is also not equilibrated. 2,2,4-TMP would prevail at equilibrium over the other TMPs, constituting 60-70% of the product, depending on the temperature. Furthermore, 2,2,3-TMP as the primary product is found in less than equilibrium amounts. Qualitatively, the same statement is valid for the other carbon number distributions. Products with a tertiary carbon atom in the 2-position dominate over other isomers in all fractions. [Pg.256]

The primary product (PQ, MQ, 0Q), the first observable product outside the zeolite at conversions approaching zero percent, is determined by the initial isomer distribution, the rate of interconversion via isomerization (kj), the respective diffusivities (Dp, Dm, DQ) and the length of the diffusion path, characterized by r. [Pg.284]

Propene- and butene-oligomers are complex mixtures. A typical isomer distribution is shown in Fig. 24. According to the thermodynamical stability the double bonds are distributed along the chain, terminal double bonds are present only in traces. To get predominant terminal products, a catalyst must provide extremely fast terminal hydroformylation activity for the traces of terminal olefins, a high isomerization activity to supply the terminal double bonds as fast as they are consumed, and low hydroformylation activity for internal double bonds. [Pg.39]


See other pages where Isomer distribution product is mentioned: [Pg.478]    [Pg.236]    [Pg.249]    [Pg.160]    [Pg.169]    [Pg.279]    [Pg.372]    [Pg.45]    [Pg.173]    [Pg.533]    [Pg.152]    [Pg.288]    [Pg.157]    [Pg.159]    [Pg.469]    [Pg.276]    [Pg.451]    [Pg.732]    [Pg.240]    [Pg.129]    [Pg.492]    [Pg.508]    [Pg.157]    [Pg.159]   
See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Distributed production

Isomer distribution

Product distribution

© 2024 chempedia.info