Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron sulfide, reaction with

In the acid-leaching process, the oxide ore is leached with sulfuric acid at elevated temperature and pressure, which causes nickel, but not iron, to enter into solution. The leach solution is purified, foHowed by reaction with hydrogen sulfide and subsequent precipitation of nickel and cobalt sulfides. [Pg.3]

Hydrogen sulfide reacts with iron oxide [1317-61 -9] to form iron sulfide, according to the following chemical reaction ... [Pg.209]

Potential Processes. Sulfur vapor reacts with other hydrocarbon gases, such as acetjiene [74-86-2] (94) or ethylene [74-85-1] (95), to form carbon disulfide. Higher hydrocarbons can produce mercaptan, sulfide, and thiophene intermediates along with carbon disulfide, and the quantity of intermediates increases if insufficient sulfur is added (96). Light gas oil was reported to be successflil on a semiworks scale (97). In the reaction with hydrocarbons or carbon, pyrites can be the sulfur source. With methane and iron pyrite the reaction products are carbon disulfide, hydrogen sulfide, and iron or iron sulfide. Pyrite can be reduced with carbon monoxide to produce carbon disulfide. [Pg.30]

Furthermore, sulfur combines with copper rather than with iron. Hence, copper sulfide remains ia the converter after the iron has been oxidized and has combiaed with siUca to be skimmed off as a slag. Typical converting reactions of iron sulfide are equations 11, 14, and 15. [Pg.198]

The manner in which many of these bacteria cany on their chemical processes is qmte comphcated and in some cases not fuUy understood. The role of sulfate-reducing bacteria (anaerobic) in promoting corrosion has been extensively investigated. The sulfates in shghtly acid to alkaline (pH 6 to 9) soils are reduced by these bacteria to form calcium sulfide and hydrogen sulfide. When these compounds come in contact with underground iron pipes, conversion of the iron to iron sulfide occurs. As these bacieria thrive under these conditions, they will continue to promote this reaction until failure of the pipe occurs. [Pg.2420]

Sulfides are intermixed with iron oxides and hydroxides on carbon steels and cast irons. The oxides are also produced in the corrosion process (Reaction 6.6). Although theoretical stoichiometry of 1 to 3 is often suggested between sulfide and ferrous hydroxide, empirically the ratio of iron sulfide to ferrous hydroxide is highly variable. Sulfide decomposes spontaneously upon exposure to moist air. Additionally, corrosion-product stratification is marked, with sulfide concentration being highest near metal surfaces. [Pg.135]

Regeneration with air can be done with continuous or periodic addition of small amounts of air. Both must be done carefully because of exothermic reaction. Regeneration is never complete, so the beds must be eventually changed out. This must be done carefully because of the pyrophoric (spontaneously combustible) nature of the iron sulfide. The entire bed is wetted first. [Pg.193]

The ion S " reacts with ferrous Fe ion to form black iron sulfide FeS corrosion product. The hydrogen ions are reduced by electrons produced by anodic reaction in step 1 and form hydrogen atom H ... [Pg.1307]

Sodium arsenite can be used to detect the presence of iron sulfide on the metal surface. Iron sulfide is the corrosion product of the reaction between hydrogen sulfide in drilling fluid and iron in the drillpipe. An acid solution of sodium arsenite reacts with the sulfide to form a bright yellow precipitate. [Pg.1318]

Foods such as meat, fish, and some vegetables contain sulfur-bearing amino acids that form volatile sulfur compounds during processing and storage. When these compounds react with iron, a black precipitate forms on the container and in most instances darkens the food. A small piece of aluminum welded to the tinplate can has been used to prevent container corrosion and sulfide staining in commercially canned hams. In this case, the aluminum acts as a sacrificial anode and stops the reaction with tin and iron that otherwise could occur at the small exposed tinplate areas (14). [Pg.48]

About 70% of the western world s supply of nickel comes from iron and nickel sulfide ores that were brought close to the surface nearly 2 billion years ago by the violent impact of a huge meteor at Sudbury, Ontario. The ore is first roasted (heated in air) to form nickel(II) oxide, which is reduced to the metal either elec-trolytically or by reaction with hydrogen gas in the first step of the Mond process ... [Pg.784]

Iron is the most abundant, useful, and important of all metals. For example, in the 70-kg human, there is approximately 4.2 g of iron. It can exist in the 0, I, II, III, and IV oxidation states, although the II and III ions are most common. Numerous complexes of the ferrous and ferric states are available. The Fe(II) and Fe(III) aquo complexes have vastly different pAa values of 9.5 and 2.2, respectively. Iron is found predominantly as Fe (92%) with smaller abundances of Fe (6%), Fe (2.2%), and Fe (0.3%). Fe is highly useful for spectroscopic studies because it has a nuclear spin of. There has been speculation that life originated at the surface of iron-sulfide precipitants such as pyrite or greigite that could have caused autocatalytic reactions leading to the first metabolic pathways (2, 3). [Pg.284]

The principal differences between the goethite and the jarosite processes take place following the hot acid leaching of the zinc ferrite residues. In the goethite process, the liquor from hot acid leaching, holding (in g l-1) 100 Zn, 25-30 Fe3+ and 50-60 H2S04, is initially subjected to a reduction step, where the ferric iron is reduced to the ferrous form by reaction with unroasted zinc sulfide concentrate at 90 °C ... [Pg.574]

Figure 12 clearly shows the effect of iron sulfide content of the coal on total conversion and liquid product yield during hydrogenation. The conversion increased from about 52 per cent to 70 per cent using the hot-rod reactor with no added catalyst. The yield of toluene soluble product (oil plus asphaltene) increased from about 30 to 44 per cent with total sulfur increase from 1 to 6.5 per cent. Thus it would appear that iron sulfide can act catalytically in the dry hydrogenation reaction as well as in slurried reactions (15). [Pg.55]

Lewis Bases. A variety of other ligands have been studied, but with only a few of the transition metals. There is still a lot of room for scoping work in this direction. Other reactant systems reported are ammoni a(2e), methanol (3h), and hydrogen sulfide(3b) with iron, and benzene with tungsten (Tf) and plati num(3a). In a qualitative sense all of these reactions appear to occur at, or near gas kinetic rates without distinct size selectivity. The ammonia chemisorbs on each collision with no size selective behavior. These complexes have lower ionization potential indicative of the donor type ligands. Saturation studies have indicated a variety of absorption sites on a single size cluster(51). [Pg.60]

In Chapter 3 we described the possible external sources of energy required for life. Here we shall assume at first that the most primitive form was not light but the chemical energy stored in unstable minerals. Such minerals were the metals and metal excess sulfides and iron sulfide in their reactions with water or hydrogen sulfide to produce hydrogen (see Wachtershauser in Further Reading) or were stores in the out of balance of states of non-metals such as S /H2S. [Pg.172]

The catalytic effect of graphite A thus depends on iron impurities, e. g. Fe304, and probably also on iron sulfides or sulfates, because sulfur is also present in this graphite, and all these iron compounds are known catalysts of FC acylation [69, 73, 74], In this respect, it seems that FeCl3 could be the true catalyst generated in situ by the reaction of the different iron compounds with acid chloride and hydrogen chloride. In the... [Pg.239]

Acid drainage results from the reaction of sulfide minerals with oxygen in the presence of water. As we show in this section, water in the absence of a supply of oxygen gas becomes saturated with respect to a sulfide mineral after only a small amount of the mineral has dissolved. The dissolution reaction in this case (when oxygen gas is not available) causes little change in the water s pH or composition. In a separate effect, it is likely that atmospheric oxygen further promotes acid drainage because of its role in the metabolism of bacteria that catalyze both the dissolution of sulfide minerals and the oxidation of dissolved iron (Nordstrom, 1982). [Pg.450]

Claus A process for removing hydrogen sulfide from gas streams by the catalyzed reaction with sulfur dioxide, producing elementary sulfur. The process has two stages in the first, one third of the hydrogen sulfide is oxidized with air to produce sulfur dioxide in the second, this sulfur dioxide stream is blended with the remainder of the hydrogen sulfide stream and passed over an iron oxide catalyst at approximately 300°C. The resulting sulfur vapor is condensed to liquid sulfur. [Pg.65]

Iron Sponge Also called Dry box. An obsolete process for removing hydrogen sulfide from gas streams by reaction with iron oxide monohydrate. The ferric sulfide that is formed is periodically re-oxidized to regenerate ferric oxide and elemental sulfur. When this process becomes inefficient because of pore-blockage, the sulfur is either oxidized to sulfur dioxide for conversion to sulfuric acid, or is extracted with carbon disulfide. [Pg.146]


See other pages where Iron sulfide, reaction with is mentioned: [Pg.311]    [Pg.3737]    [Pg.903]    [Pg.80]    [Pg.389]    [Pg.164]    [Pg.216]    [Pg.573]    [Pg.55]    [Pg.438]    [Pg.135]    [Pg.169]    [Pg.291]    [Pg.891]    [Pg.30]    [Pg.689]    [Pg.400]    [Pg.460]    [Pg.498]    [Pg.9]    [Pg.13]    [Pg.49]    [Pg.176]    [Pg.179]    [Pg.212]   
See also in sourсe #XX -- [ Pg.2 , Pg.276 ]




SEARCH



Hydrogen sulfide, reaction with iron clusters

Iron oxide reaction with hydrogen sulfide

Iron reaction

Reaction with iron

Reaction with sulfides

Sulfides, organic reaction with iron

© 2024 chempedia.info