Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionization, importance

MALDI is widely employed in MSI. LDI and LA experiments have demonstrated that the surrounding analyte environment is critical for the desorption process. Therefore, mixing of analytes with a light-absorbing matrix was shown to be beneficial for the process (Fig. 2.4) (21). Upon laser irradiation, the matrix explodes, carrying intact analytes, some of which are ionized. Importantly, for successful desorption/ionization, analyte particles should be in close proximity to the matrix/buffer molecules... [Pg.28]

As we discussed in Section 19.2, the energy associated with radioactivity can ionize molecules. When radiation ionizes important molecules in living cells, problems can develop. The ingestion of radioactive materials—especially alpha and beta emitters—is particularly dangerous because the radioactivity once inside the body can do even more damage. The effects of radiation can be divided into three different types acute radiation damage, increased cancer risk, and genetic effects. [Pg.937]

Small metal clusters are also of interest because of their importance in catalysis. Despite the fact that small clusters should consist of mostly surface atoms, measurement of the photon ionization threshold for Hg clusters suggest that a transition from van der Waals to metallic properties occurs in the range of 20-70 atoms per cluster [88] and near-bulk magnetic properties are expected for Ni, Pd, and Pt clusters of only 13 atoms [89] Theoretical calculations on Sin and other semiconductors predict that the stmcture reflects the bulk lattice for 1000 atoms but the bulk electronic wave functions are not obtained [90]. Bartell and co-workers [91] study beams of molecular clusters with electron dirfraction and molecular dynamics simulations and find new phases not observed in the bulk. Bulk models appear to be valid for their clusters of several thousand atoms (see Section IX-3). [Pg.270]

The principles of ion themiochemistry are the same as those for neutral systems however, there are several important quantities pertinent only to ions. For positive ions, the most fiindamental quantity is the adiabatic ionization potential (IP), defined as the energy required at 0 K to remove an electron from a neutral molecule [JT7, JT8and 1191. [Pg.814]

The astrochemistty of ions may be divided into topics of interstellar clouds, stellar atmospheres, planetary atmospheres and comets. There are many areas of astrophysics (stars, planetary nebulae, novae, supemovae) where highly ionized species are important, but beyond the scope of ion chemistry . (Still, molecules, including H2O, are observed in solar spectra [155] and a surprise in the study of Supernova 1987A was the identification of molecular species, CO, SiO and possibly ITf[156. 157]. ) In the early universe, after expansion had cooled matter to the point that molecules could fonn, the small fraction of positive and negative ions that remained was crucial to the fomiation of molecules, for example [156]... [Pg.819]

In contrast to the ionization of C q after vibrational excitation, typical multiphoton ionization proceeds via the excitation of higher electronic levels. In principle, multiphoton ionization can either be used to generate ions and to study their reactions, or as a sensitive detection technique for atoms, molecules, and radicals in reaction kinetics. The second application is more common. In most cases of excitation with visible or UV laser radiation, a few photons are enough to reach or exceed the ionization limit. A particularly important teclmique is resonantly enlianced multiphoton ionization (REMPI), which exploits the resonance of monocluomatic laser radiation with one or several intennediate levels (in one-photon or in multiphoton processes). The mechanisms are distinguished according to the number of photons leading to the resonant intennediate levels and to tire final level, as illustrated in figure B2.5.16. Several lasers of different frequencies may be combined. [Pg.2135]

Collisional ionization can play an important role in plasmas, flames and atmospheric and interstellar physics and chemistry. Models of these phenomena depend critically on the accurate detennination of absolute cross sections and rate coefficients. The rate coefficient is the quantity closest to what an experiment actually measures and can be regarded as the cross section averaged over the collision velocity distribution. [Pg.2476]

A selection of important anionic surfactants is displayed in table C2.3.1. Carboxylic acid salts or tire soaps are tire best known anionic surfactants. These materials were originally derived from animal fats by saponification. The ionized carboxyl group provides tire anionic charge. Examples witlr hydrocarbon chains of fewer tlran ten carbon atoms are too soluble and tliose witlr chains longer tlran 20 carbon atoms are too insoluble to be useful in aqueous applications. They may be prepared witlr cations otlrer tlran sodium. [Pg.2575]

The various fonns of betaines are very important for their charge control functions in diverse applications and include alkylbetaines, amidoalkylbetaines and heterocyclic betaines such as imidazolium betaines. Some surfactants can only be represented as resonance fonns having fonnal charge separation, although the actual atoms bearing the fonnal charge are not ftmctionally ionizable. Such species are mesoionic and an example of a trizaolium thiolate is illustrated in table C2.3.3. [Pg.2578]

Micellization is a second-order or continuous type phase transition. Therefore, one observes continuous changes over the course of micelle fonnation. Many experimental teclmiques are particularly well suited for examining properties of micelles and micellar solutions. Important micellar properties include micelle size and aggregation number, self-diffusion coefficient, molecular packing of surfactant in the micelle, extent of surfactant ionization and counterion binding affinity, micelle collision rates, and many others. [Pg.2581]

An important step in tire progress of colloid science was tire development of monodisperse polymer latex suspensions in tire 1950s. These are prepared by emulsion polymerization, which is nowadays also carried out industrially on a large scale for many different polymers. Perhaps tire best-studied colloidal model system is tliat of polystyrene (PS) latex [9]. This is prepared with a hydrophilic group (such as sulphate) at tire end of each molecule. In water tliis produces well defined spheres witli a number of end groups at tire surface, which (partly) ionize to... [Pg.2669]

It can be seen from Table 2 that the intrinsic values of the pK s are close to the model compound value that we use for Cys(8.3), and that interactions with surrounding titratable residues are responsible for the final apparent values of the ionization constants. It can also be seen that the best agreement with the experimental value is obtained for the YPT structure suplemented with the 27 N-terminal amino acids, although both the original YPT structure and the one with the crystal water molecule give values close to the experimentally determined one. Minimization, however, makes the agreement worse, probably because it w s done without the presence of any solvent molecules, which are important for the residues on the surface of the protein. For the YTS structure, which refers to the protein crystallized with an SO4 ion, the results with and without the ion included in the calculations, arc far from the experimental value. This may indicate that con-... [Pg.193]

Molecular Identification. In the identification of a compound, the most important information is the molecular weight. The mass spectrometer is able to provide this information, often to four decimal places. One assumes that no ions heavier than the molecular ion form when using electron-impact ionization. The chemical ionization spectrum will often show a cluster around the nominal molecular weight. [Pg.812]

Environmental Analysis One of the most important environmental applications of gas chromatography is for the analysis of numerous organic pollutants in air, water, and wastewater. The analysis of volatile organics in drinking water, for example, is accomplished by a purge and trap, followed by their separation on a capillary column with a nonpolar stationary phase. A flame ionization, electron capture, or... [Pg.571]

Despite their importance, gas chromatography and liquid chromatography cannot be used to separate and analyze all types of samples. Gas chromatography, particularly when using capillary columns, provides for rapid separations with excellent resolution. Its application, however, is limited to volatile analytes or those analytes that can be made volatile by a suitable derivatization. Liquid chromatography can be used to separate a wider array of solutes however, the most commonly used detectors (UV, fluorescence, and electrochemical) do not respond as universally as the flame ionization detector commonly used in gas chromatography. [Pg.596]

A further important use of El mass spectrometry lies in measuring isotope ratios, which can be used in estimating the ages of artifacts, rocks, or fossils. Electron ionization affects the isotopes of any one element equally, so that the true isotope ratio is not distorted by the ionization step. Further information on isotopes can be found in Chapter 46. [Pg.16]

The extra sources of electrons that become important are known as secondary ionization processes and are caused by ... [Pg.42]

The previous discussion demonstrates that measurement of precise isotope ratios requires a substantial amount of operator experience, particularly with samples that have not been examined previously. A choice of filament metal must be made, the preparation of the sample on the filament surface is important (particularly when activators are used), and the rate of evaporation (and therefore temperature control) may be crucial. Despite these challenges, this method of surface ionization is a useful technique for measuring precise isotope ratios for multiple isotopes. Other chapters in this book discuss practical details and applications. [Pg.52]

The advent of atmospheric-pressure ionization (API) provided a method of ionizing labile and nonvolatile substances so that they could be examined by mass spectrometry. API has become strongly linked to HPLC as a basis for ionizing the eluant on its way into the mass spectrometer, although it is also used as a stand-alone inlet for introduction of samples. API is important in thermospray, plasmaspray, and electrospray ionization (see Chapters 8 and 11). [Pg.61]

The degree of ionization increases with temperature, and at 6000-8000 K, where ionization efficiencies are 90 to 95%, nearly all atoms exist as ions in the plasma. Operation of the plasma torch under conditions that produce a cooler flame (cold plasma) has important advantages for some applications, which are discussed after the next section. [Pg.92]

Until about the 1990s, visible light played little intrinsic part in the development of mainstream mass spectrometry for analysis, but, more recently, lasers have become very important as ionization and ablation sources, particularly for polar organic substances (matrix-assisted laser desorption ionization, MALDI) and intractable solids (isotope analysis), respectively. [Pg.119]

Modern commercial lasers can produce intense beams of monochromatic, coherent radiation. The whole of the UV/visible/IR spectral range is accessible by suitable choice of laser. In mass spectrometry, this light can be used to cause ablation, direct ionization, and indirect ionization (MALDI). Ablation (often together with a secondary ionization mode) and MALDI are particularly important for examining complex, intractable solids and large polar biomolecules, respectively. [Pg.136]

A further important property of the two instruments concerns the nature of any ion sources used with them. Magnetic-sector instruments work best with a continuous ion beam produced with an electron ionization or chemical ionization source. Sources that produce pulses of ions, such as with laser desorption or radioactive (Californium) sources, are not compatible with the need for a continuous beam. However, these pulsed sources are ideal for the TOF analyzer because, in such a system, ions of all m/z values must begin their flight to the ion detector at the same instant in... [Pg.157]


See other pages where Ionization, importance is mentioned: [Pg.30]    [Pg.129]    [Pg.188]    [Pg.813]    [Pg.1324]    [Pg.1324]    [Pg.1625]    [Pg.2066]    [Pg.2083]    [Pg.2479]    [Pg.2479]    [Pg.2798]    [Pg.2802]    [Pg.2889]    [Pg.177]    [Pg.181]    [Pg.191]    [Pg.92]    [Pg.51]    [Pg.83]    [Pg.1180]    [Pg.41]    [Pg.7]    [Pg.47]    [Pg.62]    [Pg.102]    [Pg.136]   
See also in sourсe #XX -- [ Pg.3 , Pg.4 , Pg.5 ]




SEARCH



© 2024 chempedia.info