Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic recycling

These reactions occur with similar rates to those carried out in dipolar aprotic solvents such as DMF or DMSO. An advantage of using the room-temperature ionic liquid for this reaction is that the lower reaction temperatures result in higher selec-tivities for substitution on the oxygen or nitrogen atoms. The by-product (sodium or potassium halide) of the reaction can be extracted with water and the ionic liquid recycled. [Pg.185]

The Robinson annulation of ethyl acetoacetate and trans-chalcone proceeded smoothly to give 6-ethoxycarbonyl-3,5-diphenyl-2-cyclohexenone in 48 % yield. The product was separated from the ionic liquid by solvent extraction with toluene. In both these reactions, the ionic liquid [HMIM][PF6] was recycled and reused with no reduction in the product yield. [Pg.190]

The distribution of the products obtained from this reaction depends upon the reaction temperature (Figure 5.1-4) and differs from those of other poly(ethene) recycling reactions in that aromatics and alkenes are not formed in significant concentrations. Another significant difference is that this ionic liquid reaction occurs at temperatures as low as 90 °C, whereas conventional catalytic reactions require much higher temperatures, typically 300-1000 °C [100]. A patent filed for the Secretary of State for Defence (UK) has reported a similar cracking reaction for lower molecular weight hydrocarbons in chloroaluminate(III) ionic liquids [101]. An... [Pg.209]

Since no special ligand design is usually required to dissolve transition metal complexes in ionic liquids, the application of ionic ligands can be an extremely useful tool with which to immobilize the catalyst in the ionic medium. In applications in which the ionic catalyst layer is intensively extracted with a non-miscible solvent (i.e., under the conditions of biphasic catalysis or during product recovery by extraction) it is important to ensure that the amount of catalyst washed from the ionic liquid is extremely low. Full immobilization of the (often quite expensive) transition metal catalyst, combined with the possibility of recycling it, is usually a crucial criterion for the large-scale use of homogeneous catalysis (for more details see Section 5.3.5). [Pg.214]

A number of enantioselective hydrogenation reactions in ionic liquids have also been described. In all cases reported so far, the role of the ionic liquid was mainly to open up a new, facile way to recycle the expensive chiral metal complex used as the hydrogenation catalyst. [Pg.230]

The authors describe a clear enhancement of the catalyst activity by the addition of the ionic liquid even if the reaction medium consisted mainly of CH2CI2. In the presence of the ionic liquid, 86 % conversion of 2,2-dimethylchromene was observed after 2 h. Without the ionic liquid the same conversion was obtained only after 6 h. In both cases the enantiomeric excess was as high as 96 %. Moreover, the ionic catalyst solution could be reused several times after product extraction, although the conversion dropped from 83 % to 53 % after five recycles this was explained, according to the authors, by a slow degradation process of the Mn complex. [Pg.233]

The reaction was carried out in an ionic liquid/toluene biphasic system, which allowed easy product recovery from the catalyst by decantation. However, attempts to recycle the ionic catalyst phase resulted in significant catalyst deactivation after only the third recycle. [Pg.244]

Finally, it was possible to demonstrate that the ionic catalyst solution can, in principle, be recycled. By repetitive use of the ionic catalyst solution, an overall activity of 61,106 mol ethylene converted per mol catalyst could be achieved after two recycle runs. [Pg.251]

A co-solvent that is poorly miscible with ionic liquids but highly miscible with the products can be added in the separation step (after the reaction) to facilitate the product separation. The Pd-mediated FFeck coupling of aryl halides or benzoic anhydride with alkenes, for example, can be performed in [BMIM][PFg], the products being extracted with cyclohexane. In this case, water can also be used as an extraction solvent, to remove the salt by-products formed in the reaction [18]. From a practical point of view, the addition of a co-solvent can result in cross-contamination, and it has to be separated from the products in a supplementary step (distillation). More interestingly, unreacted organic reactants themselves (if they have nonpolar character) can be recycled to the separation step and can be used as the extractant co-solvent. [Pg.265]

The combination of ionic liquids with supercritical carbon dioxide is an attractive approach, as these solvents present complementary properties (volatility, polarity scale.). Compressed CO2 dissolves quite well in ionic liquid, but ionic liquids do not dissolve in CO2. It decreases the viscosity of ionic liquids, thus facilitating mass transfer during catalysis. The separation of the products in solvent-free form can be effective and the CO2 can be recycled by recompressing it back into the reactor. Continuous flow catalytic systems based on the combination of these two solvents have been reported [19]. This concept is developed in more detail in Section 5.4. [Pg.266]

BP Chemicals studied the use of chloroaluminates as acidic catalysts and solvents for aromatic hydrocarbon allcylation [41]. At present, the existing AICI3 technology (based on red oil catalyst) is still used industrially, but continues to suffer from poor catalyst separation and recycling [42]. The aim of the work was to evaluate the AlCl3-based ionic liquids, with the emphasis placed on the development of a clean... [Pg.275]

Ionic liquids operate in true biphasic mode. While the recovery and recyclability of ionic liquid was found to be more efficient than with the conventional AICI3 catalyst (red oil), the selectivity for the monoalkylated aromatic hydrocarbon was lower. In this gas-liquid-liquid reaction, the solubility of the reactants in the ionic phase (e.g. the benzene/ethene ratio in the ionic phase) and the mixing of the phases were probably critical. This is an example in which the engineering aspects are of the utmost importance. [Pg.276]

If the ionic liquid can be recycled and if its lifetime is proven to be long enough, then its initial price is probably not the critical point. In Difasol technology, for example, ionic liquid cost, expressed with respect to the octene produced, is lower than that of the catalyst components. [Pg.278]

In comparison with classical processes involving thermal separation, biphasic techniques offer simplified process schemes and no thermal stress for the organometal-lic catalyst. The concept requires that the catalyst and the product phases separate rapidly, to achieve a practical approach to the recovery and recycling of the catalyst. Thanks to their tunable solubility characteristics, ionic liquids have proven to be good candidates for multiphasic techniques. They extend the applications of aqueous biphasic systems to a broader range of organic hydrophobic substrates and water-sensitive catalysts [48-50]. [Pg.278]

To be applied industrially, performances must be superior to those of existing catalytic systems (activity, regioselectivity, and recyclability). The use of ionic liquid biphasic technology for nickel-catalyzed olefin dimerization proved to be successful. [Pg.278]

Slightly later, and independently of Cole-Hamilton s pioneering work, the author s group demonstrated in collaboration with Leitner et al. that the combination of a suitable ionic liquid with compressed CO2 can offer much more potential for homogeneous transition metal catalysis than only being a new procedure for easy product isolation and catalyst recycling. In the Ni-catalyzed hydrovinylation of... [Pg.284]

A related study used the air- and moisture-stable ionic liquids [RMIM][PFg] (R = butyl-decyl) as solvents for the oligomerization of ethylene to higher a-olefins [49]. The reaction used the cationic nickel complex 2 (Figure 7.4-1) under biphasic conditions to give oligomers of up to nine repeat units, with better selectivity and reactivity than obtained in conventional solvents. Recycling of the catalyst/ionic liquid solution was possible with little change in selectivity, and only a small drop in activity was observed. [Pg.328]

In the first publication describing the preparative use of an enzymatic reaction in ionic liquids, Erbeldinger et al. reported the use of the protease thermolysin for the synthesis of the dipeptide Z-aspartame (Entry 6) [34]. The reaction rates were comparable to those found in conventional organic solvents such as ethyl acetate. Additionally, the enzyme stability was increased in the ionic liquid. The ionic liquid was recycled several times after the removal of non-converted substrates by extraction with water and product precipitation. Recycling of the enzyme has not been reported. It should be noted, however, that according to the log P concept described in the previous section, ethyl acetate - with a value of 0.68 - may interfere with the pro-... [Pg.339]

Jacobsen subsequently reported a practical and efficient method for promoting the highly enantioselective addition of TMSN3 to meso-epoxides (Scheme 7.3) [4]. The chiral (salen)Cl-Cl catalyst 2 is available commercially and is bench-stable. Other practical advantages of the system include the mild reaction conditions, tolerance of some Lewis basic functional groups, catalyst recyclability (up to 10 times at 1 mol% with no loss in activity or enantioselectivity), and amenability to use under solvent-free conditions. Song later demonstrated that the reaction could be performed in room temperature ionic liquids, such as l-butyl-3-methylimidazo-lium salts. Extraction of the product mixture with hexane allowed catalyst recycling and product isolation without recourse to distillation (Scheme 7.4) [5]. [Pg.230]

A new class of solvents called ionic liquids has been developed to meet this need. A typical ionic liquid has a relatively small anion, such as BF4, and a relatively large, organic cation, such as l-butyl-3-methylimidazolium (16). Because the cation has a large nonpolar region and is often asymmetrical, the compound does not crystallize easily and so is liquid at room temperature. However, the attractions between the ions reduces the vapor pressure to about the same as that of an ionic solid, thereby reducing air pollution. Because different cations and anions can be used, solvents can be designed for specific uses. For example, one formulation can dissolve the rubber in old tires so that it can be recycled. Other solvents can be used to extract radioactive waste from groundwater. [Pg.327]

The most important biphasic liquid systems are probably those that combine a conventional organic phase with another type of solvent, such as water, a fluorous organic solvent, or an ionic liquid [3]. In those cases the solvent can be considered as the support for the catalyst phase and we have therefore limited the examples in this review to those where the recycled liquid catalyst phase is recovered as a whole. [Pg.151]


See other pages where Ionic recycling is mentioned: [Pg.96]    [Pg.96]    [Pg.378]    [Pg.137]    [Pg.1319]    [Pg.23]    [Pg.753]    [Pg.183]    [Pg.183]    [Pg.183]    [Pg.187]    [Pg.189]    [Pg.220]    [Pg.234]    [Pg.238]    [Pg.248]    [Pg.263]    [Pg.263]    [Pg.267]    [Pg.273]    [Pg.283]    [Pg.284]    [Pg.319]    [Pg.327]    [Pg.341]    [Pg.124]    [Pg.366]    [Pg.142]    [Pg.113]    [Pg.132]    [Pg.158]   
See also in sourсe #XX -- [ Pg.375 ]

See also in sourсe #XX -- [ Pg.42 , Pg.684 ]




SEARCH



How Can Ionic Liquids be Recycled

Ionic Liquids, Catalyst Recycle, Selectivity, and Product Separation

Ionic liquids recycling

Ionic liquids, as recyclable solvents

Ionic-Liquid-Supported Recyclable Hypervalent Iodine(III) Reagents

Recycling in ionic liquids

Recycling of Ionic Liquids

© 2024 chempedia.info