Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic liquids molten salt solvent systems

A 1 2 mixture of l-methyl-3-ethylimidazolium chloride and aluminum trichloride, an ionic liquid that melts below room temperature, has been recommended recently as solvent and catalyst for Friedel-Crafts alkylation and acylation reactions of aromatics (Boon et al., 1986), and as solvent for UV/Vis- and IR-spectroscopic investigations of transition metal halide complexes (Appleby et al., 1986). The corresponding 1-methyl-3-ethylimidazolium tetrachloroborate (as well as -butylpyridinium tetrachlo-roborate) represent new molten salt solvent systems, stable and liquid at room temperature (Williams et al., 1986). [Pg.88]

The early history of ionic liquid research was dominated by their application as electrochemical solvents. One of the first recognized uses of ionic liquids was as a solvent system for the room-temperature electrodeposition of aluminium [1]. In addition, much of the initial development of ionic liquids was focused on their use as electrolytes for battery and capacitor applications. Electrochemical studies in the ionic liquids have until recently been dominated by work in the room-temperature haloaluminate molten salts. This work has been extensively reviewed [2-9]. Development of non-haloaluminate ionic liquids over the past ten years has resulted in an explosion of research in these systems. However, recent reviews have provided only a cursory look at the application of these new ionic liquids as electrochemical solvents [10, 11]. [Pg.103]

Ionic liquids are, quite simply, liquids that are composed entirely of ions. Thus, molten sodium chloride is an ionic liquid a solution of sodium chloride in water (a molecular solvent) is an ionic solution. The term ionic liquids was selected with care, as it is our belief that the more commonly used phrase molten salts (or simply melts) is referential, and invokes a flawed image of these solvents as being high-temperature, corrosive, viscous media (cf. molten cryolite). The reality is that room-temperature ionic liquids can be liquid at temperatures as low as — 96°C, and are typically colorless, fluid, and easily handled. To use the term molten salts to describe these novel systems is as archaic as describing a car as a horseless carriage. Moreover, in the patent and recent academic literature, ionic... [Pg.111]

Solid polymer and gel polymer electrolytes could be viewed as the special variation of the solution-type electrolyte. In the former, the solvents are polar macromolecules that dissolve salts, while, in the latter, only a small portion of high polymer is employed as the mechanical matrix, which is either soaked with or swollen by essentially the same liquid electrolytes. One exception exists molten salt (ionic liquid) electrolytes where no solvent is present and the dissociation of opposite ions is solely achieved by the thermal disintegration of the salt lattice (melting). Polymer electrolyte will be reviewed in section 8 ( Novel Electrolyte Systems ), although lithium ion technology based on gel polymer electrolytes has in fact entered the market and accounted for 4% of lithium ion cells manufactured in 2000. On the other hand, ionic liquid electrolytes will be omitted, due to both the limited literature concerning this topic and the fact that the application of ionic liquid electrolytes in lithium ion devices remains dubious. Since most of the ionic liquid systems are still in a supercooled state at ambient temperature, it is unlikely that the metastable liquid state could be maintained in an actual electrochemical device, wherein electrode materials would serve as effective nucleation sites for crystallization. [Pg.68]

While the early work on molten NH4CI gave only some qualitative hints that the effective critical behavior of ionic fluids may be different from that of nonionic fluids, the possibility of apparent mean-field behavior has been substantiated in precise studies of two- and multicomponent ionic fluids. Crossover to mean-field criticality far away from Tc seems now well-established for several systems. Examples are liquid-liquid demixings in binary systems such as Bu4NPic + alcohols and Na + NH3, liquid-liquid demixings in ternary systems of the type salt + water + organic solvent, and liquid-vapor transitions in aqueous solutions of NaCl. On the other hand, Pitzer s conjecture that the asymptotic behavior itself might be mean-field-like has not been confirmed. [Pg.26]

The balance of this Introduction will be committed to an overview of the chemical structures and macroscopic properties of ionic liquid systems. Section II provides a brief overview of the properties of high temperature molten salts, to provide a reference against which room temperature species may be compared. Section III considers the liquid structure and dynamics of neat ILs, and Sections IV and V discuss their operation as solvents at the microscopic level. [Pg.87]

In this chapter we discuss preparative routes for inorganic materials in three basic types of systems involving the presence of a distinct solid-liquid interface those in which the liquid and solid phases are of the same chemical identity (solidification and vitrification processes), those in which the liquid and solid phases are not of the same chemical identity (crystallization, precipitation), and the special case in which the liquid phase is a pure ionic liquid or molten salt. Ionic liquids can serve as the solvent as well as a templating agent, and the liquid components may or may not become incorporated into the final solid product. We also discuss two areas where the distinct solid-liquid interface becomes somewhat blurred namely, sol-gel and solvothermal processes. [Pg.141]

An ionic liquid (IL) , or classically a room-temperature molten salt , is an interesting series of materials being investigated in a drive to find a novel electrolyte system for electrochemical devices. ELs contain anions and cations, and they show a liquid nature at room temperature without the use of any solvents. The combination of anionic and cationic species in ILs gives them a lot of variations in properties, such as viscosity, conductivity, and electrochemical stability. These properties, along with the nonvolatile and flame-resistant nature of ILs, makes this material especially desirable for lithium-ion batteries, whose thermal instability has not yet been resolved despite investigations for a long time. In this chapter we discuss the efforts made for battery application of ILs. [Pg.173]

An important characteristic of liquid ionic systems is that they lack an inert solvent they are pure electrolytes. Owing to this characteristic, some aspects of transport phenomena in pure molten salts are simpler than similar phenomena in aqueous solutions. [Pg.646]

In this study we restrict our consideration by a class of ionic liquids that can be properly described based on the classical multicomponent models of charged and neutral particles. The simplest nontrivial example is a binary mixture of positive and negative particles disposed in a medium with dielectric constant e that is widely used for the description of molten salts [4-6], More complicated cases can be related to ionic solutions being neutral multicomponent systems formed by a solute of positive and negative ions immersed in a neutral solvent. This kind of systems widely varies in complexity [7], ranging from electrolyte solutions where cations and anions have a comparable size and charge, to highly asymmetric macromolecular ionic liquids in which macroions (polymers, micelles, proteins, etc) and microscopic counterions coexist. Thus, the importance of this system in many theoretical and applied fields is out of any doubt. [Pg.110]

The technique of aqueous catalytic reactions has had such an impact on the field of more general two-phase reactions that scientists have now also proposed and tested other solutions. Fluorous systems (FBS, perfluorinated solvents cf. Section 7.2) and nonaqueous ionic liquids (NAILs, molten salts cf. Section 7.3) meet the demand for rapid separation of catalyst and product phases and, owing to the thermoreversibility of their phase behavior, have advantages in the homogeneous reaction and the heterogeneous separation. However, it is safe to predict that the specially tailored ligands necessary for these technologies will be too expensive for normal applications. Compared to the cheap and ubiquitous solvent water, with its unique combination of properties (cf. Table 1), other solvents may well remain of little importance, at least for industrial applications. Other ideas are mentioned in Section 7.6. [Pg.717]

Early in their work on molten salt electrolytes for thermal batteries, the Air Force Academy researchers surveyed the aluminum electroplating literature for electrolyte baths that might be suitable for a battery with an aluminum metal anode and chlorine cathode. They found a 1948 patent describing ionicaUy conductive mixtures ofAlCh and 1-ethylpyridinium halides, mainly bromides [6]. Subsequently the salt 1-butylpyridinium chloride -AICI3 (another complicated pseudo-binary) was found to be better behaved than the earlier mixed halide system, so the chemical and physical properties were measured and published [7]. I would mark this as the start of the modern era for ionic liquids, because for the first time a wider audience of chemists started to take interest in these totally ionic, completely nonaqueous new solvents. [Pg.5]

In the literature terms such as supported molten salt (SMS) catalysts, supported ionic liquid catalysts (SILC) and supported ionic liquid-phase (SILP) catalysts, have been used somewhat indiscriminately to describe catalyst systems containing a catalytic ionic phase. In this section vye will use the terms molten salt or ionic liquid to indicate the melting point of the fluid phase in the systems. Furthermore, we will distinguish between the terms SILC and SILP. SILP is used when the ionic liquid is performing mainly as an immobihzing solvent for the catalytic components. SILC is used in cases where the ionic hquid itself, ionic hquid ions or ionic liquid-like fragments are behaving as the catalytic species. [Pg.528]


See other pages where Ionic liquids molten salt solvent systems is mentioned: [Pg.322]    [Pg.235]    [Pg.295]    [Pg.295]    [Pg.76]    [Pg.199]    [Pg.199]    [Pg.199]    [Pg.2]    [Pg.235]    [Pg.295]    [Pg.374]    [Pg.411]    [Pg.576]    [Pg.118]    [Pg.374]    [Pg.297]    [Pg.1]    [Pg.297]    [Pg.451]    [Pg.86]    [Pg.86]    [Pg.148]    [Pg.179]    [Pg.588]    [Pg.313]    [Pg.59]    [Pg.144]    [Pg.145]    [Pg.356]    [Pg.550]    [Pg.297]    [Pg.198]    [Pg.420]    [Pg.533]   
See also in sourсe #XX -- [ Pg.251 ]




SEARCH



Ionic liquids salts

Ionic liquids systems

Ionic salts

Ionic solvent

Ionic systems

Liquid salts

Molten liquid

Solvent liquids

Solvent salts

Solvents molten salt

© 2024 chempedia.info