Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iodine state

Process Scrub Solution Decontamination Factor for Ij Decontamination Factor for Organic iodine State of Development Comments... [Pg.422]

Figure Al.6.20. (Left) Level scheme and nomenclature used in (a) single time-delay CARS, (b) Two-time delay CARS ((TD) CARS). The wavepacket is excited by cOp, then transferred back to the ground state by with Raman shift oij. Its evolution is then monitored by tOp (after [44])- (Right) Relevant potential energy surfaces for the iodine molecule. The creation of the wavepacket in the excited state is done by oip. The transfer to the final state is shown by the dashed arrows according to the state one wants to populate (after [44]). Figure Al.6.20. (Left) Level scheme and nomenclature used in (a) single time-delay CARS, (b) Two-time delay CARS ((TD) CARS). The wavepacket is excited by cOp, then transferred back to the ground state by with Raman shift oij. Its evolution is then monitored by tOp (after [44])- (Right) Relevant potential energy surfaces for the iodine molecule. The creation of the wavepacket in the excited state is done by oip. The transfer to the final state is shown by the dashed arrows according to the state one wants to populate (after [44]).
Although the transition to difhision control is satisfactorily described in such an approach, even for these apparently simple elementary reactions the situation in reality appears to be more complex due to the participation of weakly bonding or repulsive electronic states which may become increasingly coupled as the bath gas density increases. These processes manifest tliemselves in iodine atom and bromine atom recombination in some bath gases at high densities where marked deviations from TronnaF behaviour are observed [3, 4]. In particular, it is found that the transition from Lto is significantly broader than... [Pg.846]

Plenary 11. W Kiefer et al, e-mail address wolfgang.kiefer mail.imi-wue.de (TR CARS). Ultrafast impulsive preparation of ground state and excited state wavepackets by impulsive CARS with REMPI detection in potassium and iodine duners. [Pg.1218]

As an example, we mention the detection of iodine atoms in their P3/2 ground state with a 3 + 2 multiphoton ionization process at a laser wavelength of 474.3 run. Excited iodine atoms ( Pi/2) can also be detected selectively as the resonance condition is reached at a different laser wavelength of 477.7 run. As an example, figure B2.5.17 hows REMPI iodine atom detection after IR laser photolysis of CF I. This pump-probe experiment involves two, delayed, laser pulses, with a 200 ns IR photolysis pulse and a 10 ns probe pulse, which detects iodine atoms at different times during and after the photolysis pulse. This experiment illustrates a frindamental problem of product detection by multiphoton ionization with its high intensity, the short-wavelength probe laser radiation alone can photolyse the... [Pg.2135]

The order of alkyl halide reactivity in nucleophilic substitutions is the same as their order m eliminations Iodine has the weakest bond to carbon and iodide is the best leaving group Alkyl iodides are several times more reactive than alkyl bromides and from 50 to 100 times more reactive than alkyl chlorides Fluorine has the strongest bond to car bon and fluonde is the poorest leaving group Alkyl fluorides are rarely used as sub states m nucleophilic substitution because they are several thousand times less reactive than alkyl chlorides... [Pg.330]

If r r" there may be appreciable intensity involving the continuum of vibrational levels above the dissociation limit. This results in a u" = 0 progression like that in Figure 7.22(c) where the intensity maximum is at a high value of u or it may be in the continuum. An example of this is the B Uq+ — transition of iodine. In the B and X states is 3.025 A and 2.666 A, respectively, leading to the broad intensity maximum close to the continuum, as observed in Figure 7.19. [Pg.248]

If the values of in the combining states are very different the dissociation limit of a progression may be observed directly as an onset of diffuseness. However, the onset is not always particularly sharp this is the case in the B Uq+ absorption system of iodine... [Pg.252]

United States production of iodine pentafluoride is several hundred metric tons per year. The two U.S. producers are Air Products and Chemicals, Inc. and AUiedSignal, Inc. The 1992 price was ca 50/kg. [Pg.187]

The enrichment program followed in the United States is (/) the enrichment of flour, bread, and degerminated and white rice using thiamin [59-43-8] C 2H y N O S, riboflavin [83-88-5] C2yH2QN4Na02P, niacin [59-67-6] CgH N02, and iron [7439-89-6]-, (2) the retention or restoration of thiamin, riboflavin, niacin, and iron in processed food cereals (J) the addition of vitamin D [67-97-0] to milk, fluid skimmed milk, and nonfat dry milk (4) the addition of vitamin A [68-26-8], C2qH2qO, to margarine, fluid skimmed milk, and nonfat dry milk (5) the addition of iodine [7553-56-2] to table salt and (6) the addition of fluoride [16984-48-8] to areas in which the water supply has a low fluoride content (74). [Pg.443]

Chemical Properties. The electron configuration of the iodine atom is [Kr]4d ° and its ground state is. Principal oxidation states... [Pg.360]

Reactions in Aqueous Media. The chemistry of aqueous iodine has been extensively studied because of the role of iodine as a disinfectant (see Disinfectants AND antiseptics). The system is very complex, owing to the number of oxidation states available to iodine under ambient conditions (48). [Pg.361]

Brines. About 65% of the iodine consumed in the world comes from brines processed in Japan, the United States, and the former Soviet Union (see Chemicals frombrine). The predorninant production process for iodine from brines is the blow-out process, which was first used in Japan. Iodine is present in brines as iodide, and its concentration varies from about 10 to 150 ppm. As shown in Figure 3, the recovery process can be divided into brine clean-up, iodide oxidation to iodine followed by air blowing out and recovery, and iodine finishing. [Pg.363]

Iodine plant locations in the United States and Japan are dictated primarily by the availabiHty of natural brines or bitterns containing adequate amounts of iodine. In 1992, the United States had three iodine-producing companies Woodward Iodine Corp., North American Brine Resources, and loChem. In Japan there are five iodine-producing companies, with over 30 plants Ise, Godo, Nippo, Nitten, and Kanto. AH these companies deHver iodine as flaked material except Ise, which also produces pfiUed iodine. [Pg.364]

Plants in the United States are basicaHy iodine producers and must extract the solutions from deep (between 2000- and 3000-m) weUs. The depleted solutions are reinjected for environmental reasons and maintain the pressure of the exploitation area. In Japan, on the other hand, iodine is mainly a by-product of natural gas production, and the weUs are less deep (about 1500 m). Depleted solutions are often discarded into the ocean. Costs associated with deep weUs are relatively high, reaching 1.7 to 2.0 x 10 in the United States and up to ca 0.7 x 10 in Japan. [Pg.364]

Plant investment and maintenance costs are relatively high for a new iodine plant in the United States or in Japan because of the deep weUs required for brine production and disposal as weU as the corrosive nature of the plant streams. The principal materials cost is for chlorine and for sulfur dioxide, although in the United States the additives used for the brines, such as scale inhibitors and bactericides, also have a considerable influence on costs. [Pg.364]

Not considering the former USSR, world production of iodine was ca 13,500 metric tons in 1992. Japan provided about 45% of the world total, compared to 44% from Chile and 11% from the United States. An annual output of 2300 t from 1976 to 1979 was estimated by the U.S. Bureau of Mines (66) but was revised to 2000 tons in 1981. No official data are available for the former USSR where iodine production is reported to be produced from iodine—bromine brines. Two areas have been mentioned the Neftechalinki field in the Slavianski-Triotskoe area near the Black Sea, and a plant in the Baku area in Azerbaidzhan on the Caspian Sea where ca 1400 metric tons was estimated for 1990 production. [Pg.364]

Most nonmetallic elements (except nitrogen, oxygen, chlorine, and bromine) are oxidized to their highest state as acids. Heated with concentrated acid, sometimes ia the presence of a catalyst, sulfur, phosphoms, arsenic, and iodine form sulfuric, orthophosphoric, orthoarsenic, and iodic acid, respectively. SiHcon and carbon react to produce their dioxides. [Pg.39]

The heat of formation of ammonium chloride from the elements is 317 kJ /mol (75.8 kcal/mol) it is 175 kJ /mol (41.9 kcal/mol) from gaseous ammonia and gaseous hydrogen chloride. The heat of formation of ammonium bromide from the elements, bromine in the Hquid form, is 273 kJ /mol (65.3 kcal/mol) for ammonium iodide, the corresponding heat of formation is 206 kJ /mol (49.3 kcal/mol). Iodine is in the soHd state. [Pg.363]

Rhenium Halides and Halide Complexes. Rhenium reacts with chlorine at ca 600°C to produce rheniumpentachloride [39368-69-9], Re2Cl2Q, a volatile species that is dimeric via bridging hahde groups. Rhenium reacts with elemental bromine in a similar fashion, but the metal is unreactive toward iodine. The compounds ReCl, ReBr [36753-03-4], and Rel [59301-47-2] can be prepared by careful evaporation of a solution of HReO and HX. Substantiation in a modem laboratory would be desirable. Lower oxidation state hahdes (Re X ) are also prepared from the pentavalent or tetravalent compounds by thermal decomposition or chemical reduction. [Pg.164]

Iodized Salt. Iodized table salt has been used to provide supplemental iodine to the U.S. population since 1924, when producers, in cooperation with the Michigan State Medical Society (24), began a voluntary program of salt iodization in Michigan that ultimately led to the elimination of iodine deficiency in the United States. More than 50% of the table salt sold in the United States is iodized. Potassium iodide in table salt at levels of 0.006% to 0.01% KI is one of two sources of iodine for food-grade salt approved by the U.S. Food and Dmg Administration. The other, cuprous iodide, is not used by U.S. salt producers. Iodine may be added to a food so that the daily intake does not exceed 225 p.g for adults and children over four years of age. Potassium iodide is unstable under conditions of extreme moisture and temperature, particularly in an acid environment. Sodium carbonate or sodium bicarbonate is added to increase alkalinity, and sodium thiosulfate or dextrose is added to stabilize potassium iodide. Without a stabilizer, potassium iodide is oxidized to iodine and lost by volatilization from the product. Potassium iodate, far more stable than potassium iodide, is widely used in other parts of the world, but is not approved for use in the United States. [Pg.186]


See other pages where Iodine state is mentioned: [Pg.228]    [Pg.1462]    [Pg.701]    [Pg.701]    [Pg.228]    [Pg.1462]    [Pg.701]    [Pg.701]    [Pg.219]    [Pg.846]    [Pg.847]    [Pg.861]    [Pg.862]    [Pg.2135]    [Pg.27]    [Pg.351]    [Pg.431]    [Pg.372]    [Pg.412]    [Pg.182]    [Pg.647]    [Pg.253]    [Pg.392]    [Pg.392]    [Pg.185]    [Pg.89]    [Pg.360]    [Pg.360]    [Pg.361]    [Pg.363]    [Pg.367]    [Pg.367]    [Pg.505]    [Pg.475]   
See also in sourсe #XX -- [ Pg.612 ]




SEARCH



Batteries lithium-iodine solid state

Iodine complex state

Iodine ground state electronic configuration

Iodine intake States

Iodine intake in The United States

Iodine oxidation state

Iodine sufficiency States

United States urinary iodine concentrations

Urinary iodine concentrations States

© 2024 chempedia.info