Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interleukins Interleukin

Interleukins Interleukins are proteins produced mainly by leukocytes. There are many interleukins within this family (Table 4.4). Interleukins have a number of functions but are principally involved in mediating and directing immune cells to proliferate and differentiate. Each interleukin binds to a specific receptor and produces its response. [Pg.115]

Most interleukins (interleukin-1 being an important exception)... [Pg.116]

Oprelvekin is an interleukin. Interleukin 11 (lL-11) is a thrombopoietic growth factor that directly stimulates the proliferation of hematopoietic stem cells and megakaryocyte progenitor cells and induces megakaryocyte maturation, resulting in increased platelet production. It prevents severe thrombocytopenia and reduces the need for platelet transfusions following myelosuppressive chemotherapy in patients with nonmyeloid malignancies. [Pg.518]

ICE and Ced-3 homologue - C-FLIP, FLAME, Casper = immunoglobulin G = family of inhibitory proteins of NF-tcB = inhibitor of the NF-kB kinases, IkB kinase = interleukin, interleukin-2,-3,-5,-6,-8,-10 = interferon-y... [Pg.183]

Robinson D, Hamid Q, Ying S, et al. Prednisolone treatment in asthma is associated with modulation of bronchoalveolar lavage cell interleukin, interleukin-5, and interferon-gamma cytokine gene expression. Am Rev Respir Dis 1993 148 401— 406. [Pg.170]

Therapeutics. Therapeutic materials represent a class of polypeptides that are a low volume, high value product. The production system need not be very efficient but the quaHty of the recombinant protein has to be extremely pure (33,34). Thus high cost mammalian production systems can be tolerated. However, some of the therapeutic proteins such as insulin, human growth hormone, interleukins, interferon, and streptokinase are produced microbially. [Pg.249]

Cytokines, eg, interferons, interleukins, tumor necrosis factor (TNF), and certain growth factors, could have antitumor activity directiy, or may modulate cellular mechanisms of antitumor activity (2). Cytokines may be used to influence the proliferation and differentiation of T-ceUs, B-ceUs, macrophage—monocyte, myeloid, or other hematopoietic cells. Alternatively, the induction of interferon release may represent an important approach for synthetic—medicinal chemistry, to search for effective antiinflammatory and antifibrotic agents. Inducers of interferon release may also be useful for lepromatous leprosy and chronic granulomatous disease. The potential cytokine and cytokine-related therapeutic approaches to treatment of disease are summarized in Table 4. A combination of cytokines is a feasible modaUty for treatment of immunologically related diseases however, there are dangers inherent in such an approach, as shown by the induction of lethal disserninated intravascular coagulation in mice adrninistered TNF-a and IFN-y. [Pg.41]

Ah = Antibody IL = interleukin TNF =tumornecrosis factor INF = interferon LAK =lymphocyte-activated killer CSF =colony stimulating factors and FGF = fibroblast growth factor. [Pg.41]

The secondary stmcture elements are then identified, and finally, the three-dimensional protein stmcture is obtained from the measured interproton distances and torsion angle parameters. This procedure requites a minimum of two days of nmr instmment time per sample, because two pulse delays are requited in the 3-D experiment. In addition, approximately 20 hours of computing time, using a supercomputer, is necessary for the calculations. Nevertheless, protein stmcture can be assigned using 3-D nmr and a resolution of 0.2 nanometers is achievable. The largest protein characterized by nmr at this writing contained 43 amino acid units (51). However, attempts ate underway to characterize the stmcture of interleukin 2 [85898-30-2] which has over 150 amino acid units. [Pg.396]

One component of the age-ielated decline in immune function is decreased production of the lymphokine that promotes the growth of T-ceUs, interleukin 2 (IL-2). Administration of recombinant-derived IL-2, both in vitro and in vivo, appears to restore certain immune functions in aged mice. Recovery of T-regulatory effects on B-ceU differentiation has been reported in human cells from elderly patients treated with IL-1 and/or IL-2 (42). Similar effects have been observed in the presence of the pentapeptide thymopentin [69558-55-0] (Arg Lys Asp Val Tyr), a weU-known IL-2 inducer. Recombinant IL-2 adrninistered to aged mice for three weeks has been shown to correct the T-ceU functional deficiency associated with antigen-specific immunoglobulin production by certain lymphoid tissue (43). [Pg.431]

Reconstitution of T-ceU deficiencies with thymic hormones has not been successhil even though the various hormone preparations induce prothymocyte differentiation and functions of mature T-ceUs. They do not regulate the maturation of thymocytes in the thymus. In contrast, IL-2, endotoxin, thymic epithehal cell products, but not interleukin 1, were found to promote functional maturation of immature thymocytes. Two classes of dmgs show thymomimetic actions (Table 2). Levamisole [14769-73-4], sodium salt of diethyl dithiocarbamate (imuthiol) and certain... [Pg.431]

This drug also is reported to activate macrophages, to iaduce polyclonal B-ceU activation as well as enhance specific antibody production m vivo, and to iaduce the synthesis of iaterferon and interleukin 1 (52). The iaduction of these important cytokiaes (and others) largely accounts for the profile of biological activity displayed by the pyrimidinones. Bropirimine is currentiy ia clinical evaluation for cancer, arthritis, and immunorestoration ia AIDS patients. [Pg.432]

Interleukin-1 OC and (3. IL-1 has radioprotective activity toward BM and other tissues (151,164). IL-1 is produced in response to endotoxin, other cytokines, and microbial and viral agents, primarily by monocytes and macrophages. Other nucleated cells can also produce it. IL-1 appears to play an important role in the regulation of normal hemopoiesis directly by stimulating the most primitive stem cells and indirectly by stimulating other hemopoietic factors, including G-CSF, GM-CSF, M-CSF, and IL-6. [Pg.494]

DiaZepin Nucleosides. Four naturally occurring dia2epin nucleosides, coformycin (58), 2 -deoxycoformycin (59), adechlorin or 2 -chloro-2 -deoxycoformycin (60), and adecypenol (61), have been isolated (1—4,174,175). The biosynthesis of (59) and (60) have been reported to proceed from adenosine and C-1 of D-ribose (30,176,177). They are strong inhibitors of adenosine deaminase and AMP deaminase (178). Compound (58) protects adenosine and formycin (12) from deamination by adenosine deaminase. Advanced hairy cell leukemia has shown rapid response to (59) with or without a-or P-interferon treatment (179—187). In addition, (59) affects interleukin-2 production, receptor expression on human T-ceUs, DNA repair synthesis, immunosuppression, natural killer cell activity, and cytokine production (188—194). [Pg.124]

Interleukin (from human source). Purified using lyophilisation and desalting on a Bio-Rad P-6DC desalting gel, then two steps of HPLC, first with hydroxylapatite, followed by a TSK-125 size exclusion column. [Kock and Luger J Chromatogr 296 293 7984 ]... [Pg.543]

Interleukin-2 (recombinant human) [94218-72-1] Mr-15,000, amorphous. Purified by reverse phase HPLC. [Weir and Sparks Biochem J 245 85 1 987 Robb et al. Proc Natl Acad Sci USA 81 6486 1984.]... [Pg.544]

Figure 9 Relative accuracy of comparative models. Upper left panel, comparison of homologous structures that share 40% sequence identity. Upper right panel, conformations of ileal lipid-binding protein that satisfy the NMR restraints set equally well. Lower left panel, comparison of two independently determined X-ray structures of interleukin 1(3. Lower right panel, comparison of the X-ray and NMR structures of erabutoxin. The figure was prepared using the program MOLSCRIPT [236]. Figure 9 Relative accuracy of comparative models. Upper left panel, comparison of homologous structures that share 40% sequence identity. Upper right panel, conformations of ileal lipid-binding protein that satisfy the NMR restraints set equally well. Lower left panel, comparison of two independently determined X-ray structures of interleukin 1(3. Lower right panel, comparison of the X-ray and NMR structures of erabutoxin. The figure was prepared using the program MOLSCRIPT [236].

See other pages where Interleukins Interleukin is mentioned: [Pg.230]    [Pg.123]    [Pg.618]    [Pg.404]    [Pg.273]    [Pg.230]    [Pg.123]    [Pg.618]    [Pg.404]    [Pg.273]    [Pg.137]    [Pg.484]    [Pg.517]    [Pg.517]    [Pg.517]    [Pg.517]    [Pg.517]    [Pg.177]    [Pg.178]    [Pg.178]    [Pg.520]    [Pg.248]    [Pg.249]    [Pg.32]    [Pg.41]    [Pg.539]    [Pg.539]    [Pg.539]    [Pg.539]    [Pg.388]    [Pg.491]    [Pg.493]    [Pg.159]    [Pg.445]    [Pg.527]    [Pg.544]    [Pg.293]   
See also in sourсe #XX -- [ Pg.6 ]

See also in sourсe #XX -- [ Pg.2 , Pg.577 , Pg.578 , Pg.578 ]




SEARCH



Interleukine

Interleukines

© 2024 chempedia.info